Directional coupling and switching in multi-core microstructure fibers

Iavor Velchev and Jean Toulouse

CLEO 2004, San Francisco
Tuesday, May 18 2004
CTuV1

Lehigh University, Department of Physics,
16 Memorial drive east,
Bethlehem, PA 18015, U.S.A.
Directional coupling in two-core fibers

\[\frac{dA_1}{dz} = ik_{12}A_2 + i\delta_a A_1 \]
\[\frac{dA_2}{dz} = ik_{21}A_1 + i\delta_a A_2 \]

- \(k_{ij} \) – coupling coefficient
- \(\delta_a \) – asymmetry coefficient

For symmetric coupler:
\[k_{ij} = k_{ji} = k \quad \text{and} \quad \delta_a = 0 \]

Oscillatory solution for initial conditions
\[P_1(0) = P_0 \quad \text{and} \quad P_2(0) = 0 \]

\[P_1(z) = P_0 \cos^2(\kappa z) \]
\[P_2(z) = P_0 \sin^2(\kappa z) \]
The nature of the oscillation

Each of the two supermodes is a stationary solution of the wave equation with its own propagation constant:

\[
\begin{pmatrix}
E_s(x, y) \\
\beta_s
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
E_a(x, y) \\
\beta_a
\end{pmatrix}
\]

light in core 1 only: \(E_1 = \frac{1}{\sqrt{2}} (E_s + E_a) \)

light in core 2 only: \(E_2 = \frac{1}{\sqrt{2}} (E_s - E_a) \)
Microstructured directional coupler

\[\Lambda = 2.5 \, \mu m, \quad d = 1.0 \, \mu m \]
Modeling light propagation in microstructured fibers

Maxwell’s equations in a dielectric medium:

\[
\nabla \times \vec{E}(\vec{r}, t) = -\frac{1}{c} \frac{\partial \vec{B}(\vec{r}, t)}{\partial t}
\]

\[
\nabla \times \vec{H}(\vec{r}, t) = \frac{1}{c} \frac{\partial \vec{D}(\vec{r}, t)}{\partial t}
\]

\[
\nabla \cdot \vec{H}(\vec{r}, t) = 0 \quad \nabla \cdot \left[n^2(\vec{r})\vec{E}(\vec{r}, t) \right] = 0
\]

\[
\nabla \cdot \vec{E}(\vec{r}, t) = -\frac{2}{n(\vec{r})} \left[\nabla \cdot n(\vec{r}) \right] \cdot \vec{E}(\vec{r}, t)
\]

For electromagnetic wave in dielectric medium:

\[
\Delta \vec{E} + \frac{\omega^2 n^2}{c^2} \vec{E} + \nabla \left[\frac{1}{n} \left(\nabla n \right) \cdot \vec{E} \right] = 0
\]

\[
\Delta \vec{H} + \frac{\omega^2 n^2}{c^2} \vec{H} + \frac{2}{n} \left[\nabla n \times \left(\nabla \times \vec{H} \right) \right] = 0
\]

It is sufficient to solve only one equation

\[
\vec{H} = \frac{ic}{\omega} \left(\nabla \times \vec{E} \right) \quad \vec{E} = -\frac{ic}{\omega n^2} \left(\nabla \times \vec{H} \right)
\]
The propagation method

When looking for a plane-wave solutions:

\[E(\vec{r}) = \tilde{E}(\vec{r}) e^{-i k \cdot \vec{r}} \quad H(\vec{r}) = \tilde{H}(\vec{r}) e^{-i k \cdot \vec{r}} \]

propagating along \(z \) we take advantage of the index distribution \(n = n(x, y) \) \(\vec{k} \cdot \vec{\nabla} n = 0 \)

Evolution equations for electromagnetic wave in microstructured medium \(n = n(x, y) \)

\[
\begin{align*}
\frac{\partial \tilde{E}}{\partial z} &= - \frac{i}{2k} \Delta \tilde{E} - \frac{i}{2k} \left(\frac{n^2 \omega^2}{c^2} - k^2 \right) \tilde{E} - \frac{1}{n} \left[(\vec{\nabla} n) \cdot \tilde{E} \right] \frac{\vec{k}}{k} - i \vec{\nabla} \left[\frac{1}{n} (\vec{\nabla} n) \cdot \tilde{E} \right] \\
\frac{\partial \tilde{H}}{\partial z} &= - \frac{i}{2k} \Delta \tilde{H} - \frac{i}{2k} \left(\frac{n^2 \omega^2}{c^2} - k^2 \right) \tilde{H} - \frac{1}{n} \left[(\vec{\nabla} n) \cdot \tilde{H} \right] \frac{\vec{k}}{k} - i \frac{1}{n} \left(\vec{\nabla} n \right) \times \left(\vec{\nabla} \times \tilde{H} \right)
\end{align*}
\]
Propagation method for the magnetic field

\[
\begin{align*}
\frac{\partial H_x}{\partial z} &= -\frac{i}{2k} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) H_x - \frac{i}{2k} \left(\frac{n^2 \omega^2}{c^2} - k^2 \right) H_x - \frac{2}{k} \frac{\partial y n}{n} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right) \\
\frac{\partial H_y}{\partial z} &= -\frac{i}{2k} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) H_y - \frac{i}{2k} \left(\frac{n^2 \omega^2}{c^2} - k^2 \right) H_y - \frac{2}{k} \frac{\partial x n}{n} \left(\frac{\partial H_x}{\partial y} - \frac{\partial H_y}{\partial x} \right) \\
\frac{\partial H_z}{\partial z} &= -\frac{i}{2k} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) H_z - \frac{i}{2k} \left(\frac{n^2 \omega^2}{c^2} - k^2 \right) H_z + \\
& \quad + \frac{2}{k} \frac{\partial_x n}{n} \left(\frac{\partial H_z}{\partial x} - \frac{\partial H_x}{\partial z} \right) + \frac{\partial_y n}{n} \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} \right) - \frac{1}{n} \left[(\partial_x n) H_x + (\partial_y n) H_y \right]
\end{align*}
\]

\[
\begin{align*}
H_x(x, y; z) &\xrightarrow{1} H_x(x, y; z + dz) \\
H_y(x, y; z) &\xrightarrow{2} H_y(x, y; z + dz) \\
H_z(x, y; z) &\xrightarrow{} H_z(x, y, z + dz)
\end{align*}
\]
Λ coupler

Λ = 2.5 μm d = 1.0 μm
λ = 0.8 μm

Coupling length:
L_c = 0.139 mm
$\sqrt{3} \Lambda$ coupler

$\Lambda = 2.5 \, \mu m$ $d = 1.0 \, \mu m$

$\lambda = 0.8 \, \mu m$

Coupling length:

$L_c = 0.948 \, mm$
2Λ coupler

$\Lambda = 2.5 \, \mu m \quad d = 1.0 \, \mu m$

$\lambda = 0.8 \, \mu m$

Coupling length:
$L_c = 2.076 \, mm$
The coupling length L_c
Necklace-type six-core $\sqrt{3}\Lambda$ coupler

E_a E_s

Channels #1, 3, 5
Channels #2, 4, 6

$L_c^{(6,\text{core})} = 466.4 \mu m = \frac{1}{2} L_c^{(2,\text{core})}$

Power in channel [arb. u.]

Propagation distance z, [mm]
Conclusions

• We have developed a full 3D numerical scheme for solving the Maxwell’s equations for modeling light propagation in microstructured media with 2D index of refraction distribution $n(x,y)$.

• The model is used for accurate prediction of the coupling length L_c in various double-core microstructured fiber configurations.

• Microstructured directional fiber couplers are found to behave in a similar way to conventional fiber couplers, the difference being that much shorter coupling lengths (less than a millimeter) can be achieved at no additional production cost.

• Multi-core microstructured fibers are modeled as well, showing promise for parallel switching and mixing.
Coming soon…

Experimental verification of the models

![2 core 4λ coupler](image1)

![6 core 2λ coupler](image2)