The frequency dependence of the sideband shift is determined by the variables in Eq. (3) and the evolution equations for the sidebands. The sidebands experience a frequency difference of $\delta \tau$ from the center frequency, which yields the relation $\delta \tau = \frac{1}{\Delta n} \left(n_2 a^2 + \frac{1}{2} n_3 a^4 \right)$, where n_2 and n_3 are the nonlinear coefficients for the sidebands.

In the case of infinite small nonlinearity ($\tau = 0$), the XPM coupling coefficient η is determined by the values of Λ, Δn, and α. The total gain G is given by $G = G_{\text{tot}} - G_{\text{SD}}$, where G_{tot} is the total gain $G_{\text{tot}} = G_{\text{XPM}} + G_{\text{Raman}}$.

In backward-pumped scheme (c), the sideband frequency shift is observed in the absence of MI, whereas in forward-pumped scheme (b), the sideband frequency shift is observed in the presence of MI. The sideband frequency shift is determined by the values of Λ, Δn, and α, where Λ is the nonlinear coefficient for the sidebands, Δn is the nonlinear coefficient for the sidebands, and α is the two-wave coupling coefficient.