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Large-Scale Discovery of Disease-
Disease and Disease-Gene 
Associations
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Mihajlo Grbovic1, Rob J. Kulathinal2,3 & Zoran Obradovic1

Data-driven phenotype analyses on Electronic Health Record (EHR) data have recently drawn 
benefits across many areas of clinical practice, uncovering new links in the medical sciences that can 
potentially affect the well-being of millions of patients. In this paper, EHR data is used to discover novel 
relationships between diseases by studying their comorbidities (co-occurrences in patients). A novel 
embedding model is designed to extract knowledge from disease comorbidities by learning from a 
large-scale EHR database comprising more than 35 million inpatient cases spanning nearly a decade, 
revealing significant improvements on disease phenotyping over current computational approaches. In 
addition, the use of the proposed methodology is extended to discover novel disease-gene associations 
by including valuable domain knowledge from genome-wide association studies. To evaluate our 
approach, its effectiveness is compared against a held-out set where, again, it revealed very compelling 
results. For selected diseases, we further identify candidate gene lists for which disease-gene associations 
were not studied previously. Thus, our approach provides biomedical researchers with new tools to filter 
genes of interest, thus, reducing costly lab studies.

The increased penetration of information technologies in hospital systems in recent years has enabled collec-
tions of vast amounts of medical data in the form of electronic health records (EHRs). EHRs contain detailed 
patient-related data collected over time including past medical history, medications, procedures, immunizations, 
and diagnostic findings. In addition, EHRs store information concerning all stages of inpatient care, including a 
patient discharge summary, a detailed report prepared by a clinician at the end of each hospital stay. This docu-
ment also contains a comprehensive list of patient’s diagnostic findings, as well as the administered procedures. 
Clearly, such a rich source of patient-specific data presents an unprecedented opportunity to apply data-driven 
approaches for knowledge discovery in clinical research1.

Data mining researchers have recognized the value and potential of inpatient medical data, and have recently 
proposed effective mining approaches to help obtain actionable insights for improving healthcare2. However, the 
modeling process is burdened by a number of challenges, as the data often contains sparse, heterogeneous, and 
incomplete information due to different hospital and insurance polices, further aggravated by non-standardized 
physician practices3. The existing tools are not fully capable of addressing such a challenging task4, and in order 
to make use of these multifaceted noisy data, development of novel machine learning approaches is required 
to allow for efficient and effective analysis. Additionally, a vast amount of medical knowledge is available, even 
though often incomplete5,6, that could be used to improve the power of these models7,8. Examples of such sources 
are disease and gene ontologies, protein-protein interactions, and discovered disease-gene associations from 
previous medical studies. Building models capable of including such available domain knowledge could dually 
improve over original approaches: first, domain knowledge can increase performance of the original models, and 
second it can allow for novel applications and discoveries not possible before.

In this paper, a novel route is proposed for disease phenotyping and gene discovery, a critical step in the 
deeper understanding of medical conditions and drug discovery9. This work is motivated by recent advances in 
the field of natural language processing (NLP)10,11, and is capable of seamlessly addressing the inherent issues 
of sparsity and heterogeneity present in medical data records. In particular, a distributed, neural embedding 

1Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, PA 19122 USA. 2Department 
of Biology, Temple University, Philadelphia, PA 19122 USA. 3Institute of Genomic and Evolutionary Medicine, Temple 
University, Philadelphia, PA 19122 USA. Correspondence and requests for materials should be addressed to Z.O. 
(email: zoran.obradovic@temple.edu)

received: 11 April 2016

accepted: 09 August 2016

Published: 31 August 2016

OPEN

mailto:zoran.obradovic@temple.edu


www.nature.com/scientificreports/

2Scientific RepoRts | 6:32404 | DOI: 10.1038/srep32404

model is proposed for the phenotypic discovery of diseases that often co-occur in patients (referred to as disease 
comorbidity), and are expected to be governed by the same genetic mutations12. Our proposed approach is further 
developed to allow inclusion of domain knowledge in terms of previously discovered disease-gene associations, 
improving over original approach on the disease phenotyping task formulated as an information retrieval task 
and allowing for discoveries of previously unknown disease-gene associations. The goal of disease phenotyping 
task considered in our study is to examine which representation is genetically the most relevant, when genes 
were not included in the model training and where a hold-out set is used for evaluation. The parallel can be made 
with document retrieval studies where k nearest documents are retrieved and success is evaluated by a similarity 
metric. In such experiments our proposed approach is shown to be more accurate than other state-of-the-art 
approaches with respect to a number of rigorous evaluation tasks. A summary of the proposed approach is illus-
trated in Fig. 1.

We summarize the contributions of this work below:

•	 An application of distributed language models is proposed for the phenotypic discovery of disease associa-
tions. A novel method is used for learning low-dimensional disease representations that compactly capture 
their relations.

•	 A framework is proposed for inclusion of domain knowledge in the learning process. Specifically, gene 
association information is incorporated into EHR patient discharge data, which allows for learning low-di-
mensional gene and disease representations in the same vector space, as well as for the discovery of novel 
gene-disease interactions through straightforward nearest-neighbor searches.

•	 We trained and evaluated our models using large-scale EHR data comprising more than 35 million patient 
records, resulting in a model of high quality. The results on the task of disease phenotyping show that the 
proposed method achieved up to 85.98% accuracy, outperforming state-of-the-art methods by a very large 
margin.

•	 Genetic associations from GWAS studies also provide independent evidence that the proposed method is 
capable of discovering genetically meaningful phenotypes from noisy EHR data. To further examine the 
quality of our discovered phenotypes, use-case analysis is conducted for several disease phenotypes providing 
evidence of meaningful medical discoveries.

•	 The use of the proposed methodology is extended to the task of disease-gene relationship discovery. To evalu-
ate the value and potential of the proposed approach, its effectiveness is compared to state-of-the-art methods 
and evaluated on a held-out set. For example, in the case study of Congestive Heart Failure (CHF), 185 genes 
were retrieved using our method out of the 185 GWAS-derived genes associated with CHF.

•	 To facilitate further developments in the field and to follow-up investigations by biomedical researchers, we 
provide candidate gene lists of disease-gene associations that were not previously studied.

The following section reviews existing approaches for disease phenotyping and is followed by a section where 
a novel approach for this task is proposed. Extensive evaluation results of the proposed approach on tasks of 
disease phenotyping and gene discovery, as well as descriptions of datasets used in this study, are given a later 
section. Finally, we provide conclusions and discuss future work.

Figure 1. Graphical summary of the approach proposed in this study. Heterogeneous data obtained from 
large scale discharge records and hand curated disease-gene associations are used to jointly learn meaningful 
vector representations of disease and gene concepts in a latent vector space, where interactions of diseases and 
genes are retrieved and discovered.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:32404 | DOI: 10.1038/srep32404

Background and related work
In the treatment of ailments, the focus of medical practitioners can be roughly divided between two complemen-
tary approaches: 1) treating the symptoms of already sick patients (reactive medicine); and 2) understanding 
disease etiology in order to prevent manifestation and further spread of the disease (preventative medicine). In 
the first approach, the disease symptoms are a part of a broader phenotype profile of an individual, with phenotype 
being defined as the presence of a specific observable characteristic in an organism, such as blood type, response 
to administered medication, or the presence of a disease13. The identification process of useful, meaningful med-
ical characteristics and insights for the purposes of medical treatment is referred to as phenotyping14. In the sec-
ond approach, researchers identify the genetic basis of disease by discovering the relationship between exhibited 
phenotypes and the patient’s genetic makeup in a process refereed to as genotyping15. Establishing a relationship 
between a phenotype and its associated genes is a major component of gene discovery and allows biomedical sci-
entists to gain a deeper understanding of the condition and a potential cure at its very origin16. Gene discovery is 
a central problem in a number of published disease-gene association studies, and its prevalence in the scientific 
community is increasing steadily as novel discoveries lead to improved medical care. For example, results in 
the existing literature show that gene discovery allows clinicians to better understand the severity of patients 
symptoms17, to anticipate onset and path of disease progressions (particularly important for cancer patients in 
later stages18), or to better understand disease processes on a molecular level enabling the development of better 
treatments19. As suggested in previous studies20, such knowledge may be hidden in vast EHR databases that are 
yet to be exploited to their fullest potential. Clearly, both phenotyping and gene discovery are important steps 
in the fight for global health, and advancing tools for these tasks is a critical part of this battle. The emerging use 
of gene editing techniques to precisely target disease genes21 will require such computational tools at precision 
medicine’s disposal.

EHR records, containing abundant information relating to patients’ phenotypes that have been generated from 
actual clinical observations and physician-patient interactions, present an unprecedented resource and testbed 
to apply novel phenotyping approaches. Moreover, the data is complemented by large amounts of gene-disease 
associations derived from readily available genome-wide association studies. However, current approaches for 
phenotyping and gene discovery using EHR data rely on highly supervised rule-based or heuristic-based meth-
ods, which require manual labor and often a consensus of medical experts22. This severely limits the scalability 
and effectiveness of the process3. Some researchers proposed to combat this issue by employing active learn-
ing approaches to obtain limited number of expert labels used by supervised methods23,24. Nevertheless, the 
state-of-the-art is far from optimal as the labeling process can still be tedious, and models require large numbers 
of labels to achieve satisfactory performance on noisy EHR data3. Therefore, we approach solving this problem in 
an unsupervised manner.

Early work on exploiting EHR databases to understand human disease focused on graphical representations 
of diseases, genes, and proteins. Disease networks were proposed in Goh et al.25 where certain genes play a cen-
tral role in the human disease interactome, which is defined as all interactions (connections) of diseases, genes, 
and proteins discovered on humans. Follow up studies by Hidalgo et al.26 proposed human phenotypic networks 
(commonly referred to as comorbidity networks) to map with disease networks derived from EHR datasets, 
which were shown to successfully associate a higher connectivity of diseases with higher mortality. Based on 
these advances, a body of work linked predictions of disease-disease and disease-gene networks6,27 even when a 
mediocre degree of correlation (~40%, also confirmed on data used in this study) was detected between disease 
and gene networks, indicating potential causality between them. Such studies provided important evidence of 
modeling disease and human interactome networks to discover associated phenotypes. Recently, network studies 
of the human interactome have focused on uncovering patterns28 and, as the human interactome is incomplete, 
discovering novel relationships5. However, it has been suggested that network-based approaches to phenotyping 
and discoveries of meaningful concepts in medicine have yet to be fully exploited and tested29. This study offers a 
novel approach to represent diseases and genes by utilizing the same sources of data as network approaches, but 
in a different manner, as discussed in greater detail in the section, below.

In addition, to create more scalable, effective tools, recent approaches distinct from networks have focused 
on the development of data-driven phenotyping with minimal manual input and rigorous evaluation proce-
dures3,30,31. Part of the emerging field of computational phenotyping includes the methods of Zhou et al.32 which 
formulates EHRs as temporal matrices of medical events for each patient, and proposes an optimization-based 
technology for discovering temporal patterns of medical events as phenotypes. Further, Ho et al.33 formulated 
patient EHRs as tensors, where each dimension is represented by a different medical event, and the use of 
non-negative tensor factorization in the identification of phenotypes. Deep learning has also been applied to the 
task of phenotyping30, as well as graph mining31 and clustering34, used to identify patient subgroups based on 
individual clinical markers. Finally, Žitnik et al.35, conducted a study on non-negative matrix factorization tech-
niques for fusing various molecular data to uncover disease-disease associations and show that available domain 
knowledge can help reconstruct known and obtain novel associations. Nonetheless, the need for a comprehen-
sive procedure to obtain manually labeled samples remains one of the main limitations of modern phenotyping 
tools14. Although state-of-the-art machine learning methods have been utilized to automate the process, current 
approaches still observe degraded performance in the face of limited availability of labeled samples that are man-
ually annotated by medical experts36.

In this paper, we compare representatives of the above approaches against our proposed approach in a fair 
setup and, overall, demonstrate the benefits of our neural embedding approach (described below) on several tasks 
in a quantifiable manner.
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The proposed approach
To address the shortcomings of the existing state-of-the-art methods for disease phenotyping, we propose a 
radically new approach, motivated by the recent success of distributed language models in Natural Language 
Processing (short NLP) applications11,37. In the context of NLP, distributed models are able to learn useful word 
representations in low-dimensional continuous vector spaces in an unsupervised manner, without the need for 
expensive labeling/annotation efforts. The methods use the surrounding context of a word in a sentence, and 
learn word representations such that in the resulting embedding space semantically similar words are close to 
each other11. Our objective is to take advantage of this property for the task of disease phenotyping, and learn 
disease representations in a low-dimensional space where diseases that occur in the same contexts are nearby. As 
a result, and in contrast to comorbidity methods commonly used in practice, related diseases could have a high 
similarity score even if they do not co-occur in the same patients. This would allow identification of similar dis-
eases through straightforward K-nearest-neighbor search in the disease embedding space, without using super-
vised signals during the learning process. A similar approach has been successfully applied to extracting features 
from medical texts38. However, adopting such an approach to extract meaningful concepts from EHR databases 
coupled with other heterogeneous sources, as proposed in our study, is the first work of its kind.

Adapting distributed language models to the task of disease phenotyping is not an easy endeavor. Finding 
distributed disease representation, as opposed to finding word representations, brings very unique challenges 
quite different from those found in everyday NLP problems. Contrary to everyday language where linguistic rules 
and notions of words and sentences are clearly defined, there are no existing notions of “sentence of diseases” or 
surrounding contexts that are equivalent to the NLP domain.

In this paper, we address these issues, and propose two methods that bring state-of-the-art distributed lan-
guage models to the setting of disease phenotyping: 1) Disease2Diseases, where we exploit inpatient discharge 
summaries from EHR records, from which we create “disease sentences” and apply recently proposed language 
model11; and 2) DiseaseAndGenes2Diseases, where we propose a novel method to learn disease and gene vector 
representations simultaneously by incorporating domain knowledge regarding known disease-gene associations 
into the inpatient discharge observational data. The DiseaseAndGenes2Diseases method learns low-dimensional 
representations of diseases and genes in the same embedding space10, which opens doors for application of the 
proposed method to a number of important tasks, such as the discovery of new disease-gene associations.

Low-dimensional embedding models. Let us assume that we are given a set   of patient discharge 
records and a set  of possible diseases. Then, a discharge record = … ∈p d d( , , )i i iM1 i

  of the ith patient is 
defined as a sequence of diseases ∈di  at the end of a hospital stay, where Mi is the number of diagnosed dis-
eases in the sequence. Moreover, each disease ∈dm  is associated with Nm genes, called a genotype of the dis-
ease, represented as a sequence of genes = …d g g g( , , )m m m mN1 2 m

, ∈g , where  is the set of all possible genes. 
Then, using the set  , the objective is to find D-dimensional real-valued representations ∈vd

D for every dis-
ease d and ∈v g

D for every gene g, such that diseases with similar phenotypes and common gene origins lie 
nearby in the vector space.

Before discussing their application to disease phenotyping, let us introduce the main idea of neural language 
models as applied to NLP. These methods take advantage of word order, and state the same assumption as n-gram 
language models that temporally closer words in the word sequence are statistically more dependent. Typically, a 
neural language model learns the probability distribution of the next word given a fixed number of preceding 
words that act as the context. More formally, given a word sequence …w w w( , , , )T1 2  from the training data, the 
objective of the model is to maximize the average log-likelihood function,

 ∑= |
=

− + −T
w w w1 log ( : ),

(1)t

T

t t b t
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where wt is the tth word, and − + −w w:t b t1 1 is a sequence of b successive preceding words that act as the context to 
the word wt. A typical approach to approximate probability distribution  − + −w w w( : )t t b t1 1  is to use a neural 
network model architecture39. The neural network is trained by projecting the vectors for context words 

…− + −w w( , , )t b t1 1  into a latent representation with multiple non-linear hidden layers and the output softmax 
layer comprising W nodes, where W is a size of the vocabulary (equal to the number of diseases   in our task), 
while attempting to predict word wt with high probability.

When working with large-scale data, the vocabulary size W can easily reach the millions. In those cases, 
training of the neural network becomes a challenging task, as updates of word vectors become computationally 
expensive. For that reason, recent approaches11 propose log-linear models which aim to reduce the computational 
complexity. The use of hierarchical softmax40 or negative sampling11 is shown to be effective in substantially 
speeding up the training.

Disease2Diseases (D2D) method. In this section we propose the disease2diseases (D2D) approach for 
learning disease representations, building upon ideas introduced by the recently proposed word2vec algorithm11. 
The key insight is that we can represent the patients’ lists of diseases and medical conditions from EHRs as 
sequences of tokens, and view each sequence as a sample from some unknown language. Following this reason-
ing, the language model learns representations of diseases in a low-dimensional space using each patient dis-
charge record as a “sentence” and the diseases within the record as “words”, to borrow the terminology from the 
NLP domain. The diseases in each record are ordered by the time of their diagnosis, from earlier to more recently 
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found conditions. Low-dimensional disease representations are learned by maximizing the objective function  
over the entire set   of records as follows,

L
P

∑ ∑ ∑= | .
∈ ∈ − ≤ ≤ ≠

+d dlog ( )
(2)p d p b i b i

m i m
, 0m

The probability  +d d( )m i m  of observing some “neighboring” disease dm+i given the current disease dm is defined 
using the soft-max function as
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where vd and ′vd are the input and output D-dimensional vector representations of disease d, and hyper-parameter 
b represents the length of the context for disease records.

As illustrated in Fig. 2(a), and equation (3), Disease2Diseases uses the central disease dm to predict b diseases 
that come before and b diseases that come after it in the discharge record. As a result, diseases that often co-occur 
and diseases with similar contexts (i.e., with similar neighboring diseases) will have similar representations as 
learned by our model.

DiseaseAndGenes2Diseases (DAG2D) method. In the previous section we described how we can learn 
disease representations directly from EHR records in an unsupervised manner. However, there exists a large 
amount of domain knowledge related to the observed diseases, and omitting this valuable information during 
modeling and training stages would clearly lead to suboptimal performance of any approach41. In this section we 
describe DiseaseAndGenes2Diseases (DAG2D), a method that allows straightforward incorporation of external 
information into the training procedure, resulting in improved vector embeddings.

The DAG2D model assumes that a subset of diseases from the training data  are associated with genes, where 
the associations are provided by domain experts and considered as domain knowledge. We leverage this informa-
tion by assigning a vector representation to each gene, and make use of disease contexts in the training data to 
jointly learn both disease vectors and gene vectors in the same low-dimensional space. To this end, given the 
diseases associated with genes, we extend the set of patient discharge records   to obtain data set g , where asso-
ciated genes were added to the discharge records. In particular, assuming that a disease in the EHR record is 
accompanied by a non-empty set of associated genes, whenever a vector of central disease dm is updated to predict 
the surrounding diseases, the vectors of genes assigned to dm are updated as well.

More formally, assuming central disease dm is associated with Nm of   genes in total, = …d g g{ , , }m m mN1 m
, 

the DAG2D learns disease and gene representations by maximizing the following objective function ,

L
P

 ∑ ∑ ∑ ∑= | + .
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Probability  +d g( )m i  of observing neighboring disease dm+i, given gene g associated with the central disease dm, 
is defined using the soft-max,

Figure 2. Graphical representations of the D2D and DAG2D models illustrated on projecting Acute 
Myocardial Infarction (AMI) diagnoses and AMI-related genes to AMI-associated diagnoses. 
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The DAG2D model is depicted in Fig. 2(b), where we illustrate how the context disease vectors are influenced 
both by the central disease and by its associated genes.

We solve both (2) and (4) using stochastic gradient descent, suitable for large-scale problems. However, com-
putation of gradients is proportional to the number of unique diseases and genes in the data, which may be 
computationally expensive in practical tasks. As an alternative, we use negative sampling11, which significantly 
reduces the computational complexity and allows fast training of the embeddings on data with millions of patient 
records. Lastly, once the disease and gene vectors are trained, we measure similarity between them using the 
cosine distance.

Both D2D and DAG2D models can be seen as weighted matrix factorization models of underlying disease 
context structure42. This neural embedding approach can be compared to other matrix factorization models on 
different disease network and covariance matrices, with the advantage of being better able to explore disease 
co-occurence42.

The proposed approach has certain drawbacks in terms of modeling. For instance, parameters D and b are not 
automatically selected. Additionally, each disease in this study receives a single vector representation, whereas, in 
reality, the same disease can have several modules: for example sepsis caused by the pneumonia and sepsis caused 
by external injury. Also, the current model does not take into account disease hierarchical structure which can 
carry significant information. These issues will be addressed as a follow up: the main goal of this study is to char-
acterize the power of disease representations of the proposed neural embedding models.

Experiments
In this section we describe the data sets used to evaluate the proposed embedding methods, introduce baseline 
methods, and discuss the experimental setup and evaluation results.

Data sets. The primary data source used in this paper is from the public State Inpatient Database43 (SID), 
a set of longitudinal state-specific hospital inpatient databases. This rich dataset is provided by the Agency for 
Healthcare Research and Quality, and is a part of the Healthcare Cost and Utilization Project (HCUP). Specifically, 
we collected EHR data from SID California, containing 35,844,800 discharge records from 474 hospitals over a 
period of 9 years (from January 2003 to December 2011). For each patient there are up to 25 diagnosis codes, 
originating from the 9th revision of the International Classification of Diseases (ICD9), a hierarchical coding 
scheme which is part of standard diagnostic tools for epidemiology, health management, and clinical practice44. 
The ordering of diagnoses is used as found in the database (diagnoses codes are ordered by the importance for 
inpatient admission as seen in doctors’ notes at the time of discharge), given that it is built by ranking diagnoses 
from the doctors’ notes for each patient; thus the first listed disease is the primary reason for hospitalization, with 
secondary diseases diagnosed at admission or during hospitalization. In our experiments, we limit the population 
to inpatients who are more than 1 year old. In total, the SID California database includes 14,207 unique disease 
codes.

In addition to observational EHR data obtained from hospitals, we used domain knowledge data that con-
tains genetic variations associated with a particular disease, collected from published results of various medical 
studies. In particular, we used the EBI-NHGRI public GWAS catalog data45, which contains disease-gene associ-
ations for more than 11,000 genes and 71 disease groups (out of 260 disease groups defined in the ICD9 Clinical 
Classifications Software schema). In order to create a unified mapping between genes and diseases, we map a gene 
to a disease group using single nucleotide polymorphisms (SNPs) with a p-value < 10−5. The ordering of genes 
for each disease is possible using p-values, however, as studies are conducted on different human populations, 
such ordering could be potentially biased. Therefore, we shuffle genes for each disease at each different discharge 
record in our experiments to ensure the removal of this bias provided by the studies. In addition to hand curating 
the GWAS database, we have also manually introduced gene-disease mappings from PubMed publications.

Note that there are around 190 disease groups for which no gene associations were previously investigated 
(e.g., thyroid disorders). In order to improve the understanding of these understudied diseases, medical research-
ers can greatly benefit from our methods that suggest potential gene associations. Concentrating on a subset of 
suggested genes would significantly reduce time and monetary costs needed for research studies.

Experimental setup. To demonstrate the power of the models, we evaluate them on two tasks:

•	 Disease Phenotyping: Identifying diseases with similar contexts as the query disease.
•	 Disease-Genes Association Discovery: Identifying (novel) disease-genes relations of the query disease.

For the first task, the models are trained in two set-ups. To train the D2D model, we used only EHR data  
(  dataset). To train the DAG2D model (for both of the tasks), we extended patient discharge records by associ-
ating diseases to corresponding genes according to GWAS data (we found 2,739 diseases that have gene associa-
tions, or 23.5% of the entire disease set) in g  dataset. In order to remove any bias across studies, gene lists are 
shuffled while assigning the list to the disease.

Dimensionality of the embedding space D was explored for 11 choices in the 50 to 1,000 range. Context 
neighborhood size was set to b =  8 chosen to be close to average number of diagnosis of all inpatient records (7.58 
in our dataset). Finally, we used 25 negative samples in each vector update for negative sampling as suggested in 
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the literature11. Following reported distributed language models11, the most frequent diseases and genes were 
subsampled during training.

For evaluation and comparison with the current state-of-the-art we pose the tasks of phenotyping and gene 
discovery as information retrieval tasks. First, the proposed model and baselines are used to learn disease and 
gene representations in an unsupervised manner. Then, for each disease we retrieve k-nearest diseases or genes in 
the embedded space, and evaluate the quality of the retrieved objects using Precision@K metric.

Embedded dimensionality D was chosen to be smallest D where Precision@K starts saturating as dimension-
ality grows. In our experiments, this point was observed at dimensionality D =  200, which provided an acceptable 
trade-off between good accuracy of the model and its training speed which scales linearly with the dimensionality 
(Fig. 3). While increasing D, we have observed drop in accuracy and halted further examinations of dimension-
ality in this study.

Baseline models set-up. We evaluated the proposed methods against state-of-the-art approaches, such as 1) 
Latent Dirichlet Allocation (LDA)46, 2) spectral clustering47, and 3) modularity48, which have been successfully 
applied to EHR analysis49,50. The LDA model was trained using the same data as D2D and DAG2D. The spec-
tral and modularity models representation in Rd from the first d eigenvectors were trained by decomposing the 
Laplacian of the graph G and modularity matrix of graph G, respectively. We define two types of graph G in which:

•	 Nodes represent diseases and genes, and links are determined by gene co-occurrence in GWAS and disease 
co-occurrence in EHR data.

•	 Nodes represent diseases, and links are determined by the comorbidities in the EHR data as proposed in 
Hidalgo et al.26. For each link, a Pearson correlation is defined, and link rejection decided using a t-statistic6 
(disease-gene network was not built using comorbidities statistics, as such an approach is not used in the 
literature).

It should be noted that there are other ways to generate interactome networks of human diseases5,27,28,51,52, 
however, these are not easily applicable for a general disease phenotyping task this study addresses, and as such 
are not included.

The diseases and genes are then mapped into a D space by projecting onto the subspace spanned by the larg-
est eigenvectors. In order to compare to the largest body of work on disease representation, we have drawn disease 
phenotypes by choosing the nearest neighbors (the largest link weight) of the query disease in the 4) disease 
comorbidity network, as well as in the 5) diseases and diseases-genes co-occurance network. The 5) can be seen 
as a baseline that for a particular disease returns neighbors that were most frequently commonly observed in the 
EHR data. In addition, disease comorbidity representation was calculated by applying random walks on the 
comorbidity network53, however this approach failed to provide satisfactory results due to graph sparsity, as such, 
those results are omitted from the Results section.

D2D based disease-disease associations. In each approach we map diseases to D =  200 dimensional 
space. Then, disease-disease closeness values are measured in the embedded space using the cosine distance 
metric.

In the first set of experiments we evaluated the quality of disease representations obtained using the two pro-
posed methods. Specifically, we selected 2,739 diseases found in the GWAS data and for each retrieved K nearest 
diseases, with ∈K {1, 2, 5, 10}. Each of the retrieved diseases was labeled as positive if it shares a gene with the 
query disease, and labeled negative otherwise, which is used as a proxy for having the same phenotype54. Then, we 
computed precision@K for each disease as a fraction of positive neighbors within the K retrieved ones, and report 
the average precision over all 2,739 diseases in Table 1.

Figure 3. Precision@K for D2D model with different dimension D of the embedding space. 
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Our proposed methods outperform other approaches by a significant margin, for all values of K and for both 
training data sets, suggesting the suitability of the approaches for the task of phenotyping.

Moreover, as each disease has more than one gene associated with it in the GWAS data, we computed an 
overlap of the genes between the query disease and its neighbor. Then, for each query disease we computed the 
percentage of overlapping genes6 as

=K overlapped genespercentage of overlapping genes@ #
total #genes

,
(7)

giving a stronger measure of genetic similarity between the neighboring diseases. We report the average over-
lap over all diseases in the right side of Table 1. Again, based on the reported results we find that our pro-
posed approaches obtained the best results, providing much better disease representations than any of the 
state-of-the-art methods.

Case studies of D2D-based retrieval of disease-disease associations. To illustrate the usefulness of 
the D2D model we discuss disease-disease associations discovered by this approach in the context of four specific 
high-impact diseases. Case studies demonstrate the power of improved disease phenotyping in increasing clinical 
knowledge by both generating novel association discoveries and decreasing uncertainty by validating assump-
tions physicians may hold. We demonstrate the potential impact of using very large patient databases to answer 
a variety of questions clinicians may ask, as well as providing potential evaluation directions. Our provided case 
studies are meant to deepen the readers’ understanding of embedding model behavior. In each case study, the 
top ten most related disease conditions in the embedded space are retrieved, and their associations are discussed.

As a reminder, D2D is using only EHR records (list of diseases a patient was diagnosed) and no domain 
knowledge information. The model is then learning vector representation for each of the diseases such that con-
textually similar diseases are closer in the embedded space. Displayed use cases show that embedded space can 
be characterized as discovering conditions in phenotypes that are i) a similar condition (including same disease 
present on different organ), ii) different stages of the same condition, and iii) causative and/or effective conditions 
to central disease.

Case study 1: Chronic kidney disease Stage I (ICD-9 code: 585.1). As an example, we show the nearest neighbors 
of Chronic kidney disease Stage I (CKD) in Table 2. The model was able to learn to accurately map within its clos-
est proximity (given are values of Cosine similarity) successive stages of this chronic disease without including 
any domain knowledge. The recovery of disease stages was observed in other case studies, including high fatality 
diseases of acute myocardial infraction (ICD-9 code: 410.00) and lung cancer (ICD-9 code: 162.9).

Case study 2: Multiple Sclerosis (ICD-9 code: 340). Multiple sclerosis, a chronic disease involving damage to the 
sheaths of nerve cells in the brain and spinal cord, is discussed next (Table 3). The reasons for this disease are not 
yet well understood, but the autoimmune process appears to be caused both by genetic and environmental factors - 
e.g., viral infections in early life55. Discovered associations in this case study support these statements. From the 
top 10 retrieved phenotypes, we observe that different inflammations of neural tissue (e.g., spinal cord, optical 
nerves, brain), late effects of neural tissue bacterial infections as well as late effects of nervous system injuries are 

Data K

Average precision@K Average perc. of overlapping genes@K

1 2 5 10 1 2 5 10



D2D 0.9449 0.9367 0.9225 0.9047 0.8159 0.7966 0.7564 0.7111

Modularity (Adjacency) 0.8575 0.8457 0.8284 0.8130 0.5198 0.4893 0.4508 0.4145

Spectral (Adjacency) 0.7181 0.7007 0.6795 0.6640 0.3052 0.2779 0.2311 0.2006

Modularity 
(Comorbidity) 0.8493 0.8412 0.8110 0.7865 0.5586 0.5315 0.4681 0.4204

Spectral (Comorbidity) 0.8375 0.8316 0.8190 0.7974 0.5288 0.4989 0.4520 0.3964

Comorbidity graph 0.7268 0.7134 0.6915 0.7068 0.1582 0.1496 0.1465 0.1554

Disease co-occurrence 0.5616 0.5516 0.5439 0.5668 0.1448 0.1329 0.1264 0.1261

LDA 0.5260 0.5094 0.4913 0.4217 0.1040 0.0989 0.0864 0.0853

 g

DAG2D 0.9598 0.9444 0.9239 0.9079 0.8486 0.7963 0.7237 0.6720

Modularity (Adjacency) 0.8711 0.8604 0.8503 0.8389 0.5303 0.5082 0.4706 0.4340

Spectral (Adjacency) 0.9165 0.9102 0.9020 0.8926 0.7524 0.7430 0.7277 0.7110

Disease and genes co-
occurrence 0.6978 0.6985 0.7093 0.7071 0.1058 0.1042 0.1018 0.0935

LDA 0.5795 0.3874 0.3253 0.2831 0.1136 0.0781 0.0760 0.0652

Table 1.  Precision and gene overlap for various competing models for the task of phenotype discovery, 
evaluated using disease-gene associations.
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highly ranked. A better understanding of these inflammations, bacterial infections, and physical injuries and their 
relation to multiple sclerosis may help address the heterogeneity found in patients, and also improve the treat-
ment of the disease, including prevention in some cases. Moreover, high ranks of different scleroses (including 
notorious ALS disease) and spina bifida (a birth defect in which a baby’s spinal cord fails to develop properly) may 
strongly indicate that diseases in this phenotype are determined by the genes their carriers possess. The ranked 
list of genes identified by this study can be found in the Supplement.

Case Study 3: Septicemia (ICD-9 code: 995.91). Sepsis (blood infection) is a condition caused by an overwhelm-
ing immune response to infection. From the left side of Table 4 we observe that “Severe sepsis” and “Septic 
shock” are discovered as the most related to the disease code, “Sepsis”, validating previously known relationships 
(given that these could be considered as stages of sepsis in general). More surprising neighboring disease codes 
include infections (both bacillus and non-bacillus, including fungi that easily penetrate into blood - candidiasis 
and mycoses) and inflammations on various body parts and organs. Additional high rank related diagnoses were 
hyperosmolality and hypernatremia which shows that the obtained retrievals are capable of detecting well known 
indicators of sepsis. Using this knowledge about related phenotypes may help physicians react earlier to potential 
septic cases and reduce mortality of the biggest killer disease in California (e.g., by reacting earlier to an infection 
that has not turned septic yet).

Case Study 4: Congestive Heart Failure (ICD-9 code: 428.0). From the family of heart diseases we show 
disease-disease associations for one of the most deadly diagnoses. Congestive Heart Failure (CHF), a disease in 
which the heart becomes weaker over time (i.e., heart’s pumping power is weaker than normal) while usually 
expanding its volume. Discovered disease-disease associations for CHF (Table 4 right side) are dominated by 
conditions involving asynchronous heartbeat due to fibrillation, flutter, tachycardia and blockades of cardiac 

Phenotype disease Cosine Similarity

Chronic kidney disease Stage II (mild) 0.9361

Chronic kidney disease Stage III (moderate) 0.8652

Chronic kidney disease Stage IV (severe) 0.7647

Chronic kidney disease unspecified 0.6923

Table 2.  Four nearest disease neighbors for Chronic Kidney Disease Stage I.

Multiple Sclerosis

Late effect of spinal cord injury

Other causes of myelitis

Neuromyelitis optica

Acute infective polyneuritis

Late effects of intracranial abscess or pyogenic infection

Late effects of viral encephalitis

Acute (transverse) myelitis NOS

Amyotrophic lateral sclerosis

Spina bifida without mention of hydrocephalus unspec. region

Primary lateral sclerosis

Table 3.  Ten nearest disease neighbors of the Multiple Sclerosis phenotype retrieved by the D2D model.

Sepsis Congestive heart failure unspecified

Severe sepsis Other primary cardiomyopathies

Septic shock Atrial fibrillation

Intestinal infection due to Clostridium difficile Other specified forms of chronic ischemic heart disease

Candidiasis of other urogenital sites Atrial flutter

Other and unspecified mycoses Other chronic pulmonary heart diseases

Systemic inflammatory response syndrome Paroxysmal ventricular tachycardia

Hyperosmolality and-or hypernatremia Cardiac pacemaker

Pressure ulcer stage III Aortic valve disorders

Proteus infection Other left bundle branch block

Other shock without mention of trauma Old myocardial infarction

Table 4. Ten nearest disease neighbors for the Sepsis and Congestive heart failure phenotypes retrieved by 
the D2D model.
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nerve that often cause these asynchronous heartbeat conditions. Longer periods of asynchronous heartbeat cause 
weakening of heart muscle due to irregular blood flow. Pulmonary disorders can lead to pulmonary hyperten-
sion which can result in heart failure. A similar mechanism can be caused by chronic kidney failure condition; 
however it is not present in the phenotype. The reason for such an oversight can be lack of chronic kidney disease 
instances in HCUP database, due to the fact that patients suffering from chronic kidney diseases are regular visi-
tors to the hospitals (regular dialysis treatment) and are not considered inpatients. Thus, proposed models would 
not be able to learn proper vectors for such a condition, indicating a limitation of the study, but not a weakness of 
the proposed approach. Heart disorders of aortic valve and hearth cells are also present in the CHF phenotype, 
and represent indicators of scars on the heart, that are well correlated to the CHF. Similar traits, as in picking dis-
ease causes in the phenotype have been observed in three more high fatality diseases: pneumonia (ICD-9 code: 
486), acute respiratory failure (ICD-9 code: 518.81) and renal failure (ICD-9 code: 586).

DAG2D based disease-genes associations. In order to evaluate the potential power of the DAG2D 
model to identify gene-disease associations we conducted the following experiment. First, we randomly selected 
20% of the diseases that have associated genetic data (the diseases found in the GWAS data set) and removed all 
their gene associations from the training data. Although we removed genetic information, these diseases are not 
removed from the original EHR data, so that we are able to learn their vector representations. Second, we learn 
DAG2D on the data set where the remaining 80% of diseases remained associated with their corresponding gene 
information data. The DAG2D model then contains low-dimensional representations of diseases and genes in the 
same embedding space, and we evaluated model performance by measuring how many of the removed genetic 
associations were correctly retrieved.

We compared DAG2D to modularity, spectral, and LDA methods, trained on  g  data. Graphs for modularity 
and spectral were constructed such that diseases and genes represent nodes where links between diseases were 
based on co-occurrence information, while links between genes and diseases were created based on disease-gene 
associations. Having learned disease and gene representations for each of the diseases from the test set we found 
the top K genes based on similarity in a low-dimensional space. In addition two trivial predictors are included: 
disease-gene co-occurrence, predicting genes that most commonly appeared in records and most frequent gene, 
always predicting the most commonly occurring genes.

Similar to the previous section, in Table 5 we report averaged precision@K, which is defined as a percentage of 
genes that are correctly identified out of top K retrieved. We find that the proposed DAG2D method outperforms 
the baselines for almost all values of K, except on the very challenging prediction of K =  1, where DAG2V was 
second best. Interestingly, LDA is the least accurate one in both DAG2D and D2D experiments, which can be 
explained by the fact that this method performs poorly on short “documents” (the average patient record in our 
data has only 7.62 diagnoses).

To delve deeper into the obtained results, the top results obtained in disease-gene association discovery is 
provided: we identified all 185 of 185 genes known to be associated via the GWAS to congestive heart failure 
(ICD-9 code: 428.0), 90/90 genes associated to hypothyroidism (ICD-9 code: 244.9), 108/111 for chronic airway 
obstruction (ICD-9 code: 496), and 100/111 for osteoarthrosis (ICD-9 code: 715.90).

The three genes found for chronic airway obstruction, not present in the 111 genes identified from GWAS 
studies, are SH3RF1, LOC645177 and SPAG16. While examining the literature, we found that all three genes have 
similar levels of gene expression in a number of tissues including the lungs. Additionally, proteomic assays reveal 
high expression in platelet blood cells for SH3RF156, which are shown to influence chronic airway obstruction in 
the past57 and in bone marrow stem cells for SPAG1658.

As most diseases have no available genetic associations (i.e., gene-disease associations were not available from 
the EBI-NHGRI GWAS catalog), we find that discovered associated genes often have protein and/or microarray 
expression in an associated tissue or that there is a mechanism that can potentially explain certain non-obvious 
associations, which will hopefully be unraveled in the near future by genetic research. The full list of genes ranked 
according to the DAG2D model is provided in the Supplement for further examination and as a resource for 
future genetic research.

Supplement
In addition, provided are two supplementary files: disease-phenotype.csv and disease-genotype.csv. Both files 
store query disease name and its ICD-9 code in first two columns, and the other columns include top 50 nearest 
diseases in phenotype, sorted, and top 1000 closest genes, sorted, obtained by the D2D and DAG2D models, 
respectively.

K 1 2 5 10

DAG2V 0.6978 0.8056 0.7293 0.6711

Modularity 0.4760 0.4874 0.4902 0.4689

Spectral 0.7803 0.7551 0.6705 0.6387

LDA 0.2300 0.2570 0.3560 0.4180

Co-occurence 0.4691 0.3867 0.2998 0.2416

Most Frequent 0.2000 0.3467 0.4324 0.3887

Table 5.  precision@K results for gene discovery.
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Conclusion
We propose a novel model for phenotyping and gene discovery, building upon the latest advances in neural lan-
guage models. The described approaches allow for unsupervised learning from patient records, as well as seam-
less incorporation of expert, domain knowledge into the learning process. The methods learn low-dimensional 
representations of diseases and genes in a common embedding space, setting the foundation for disease-disease 
and disease-gene relationship discovery through trivial K-nearest neighbor searches in the new vector space. The 
experiments on large-scale EHR data demonstrate that the proposed approaches significantly outperform the 
existing state-of-the-art methods on important tasks of phenotyping and gene discovery in the emerging area of 
computational phenotyping. Benefits of the approaches will advance clinical research and practice by accelerating 
our understanding of disease and gene associations.
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