Theorem 2. Let W^* be the solution of (6), and T be the total number of training iterations. Further, let the pruning be performed as described above, p be a starting probability of weight duplication, and $0 < \beta < 1$ is a multiplicative factor that reduces p after every weight duplication. Then,

$$
\frac{1}{T} \sum_{t=1}^{T} (\mathcal{L}^{(t)}(W^{(t)}|z) - \mathcal{L}^{(t)}(W^*|z)) \leq \frac{(2 + c)^2(2 + p/(1 - \beta))}{\lambda} + \frac{(2 + c)^2(2 + p/(1 - \beta))^2}{2T\lambda}\left\{\frac{p(2\beta + 3)}{(1 - \beta)^2} + \ln(T) + 1\right\}.
$$

Proof. The proof closely follows the proof of Theorems 1 and 3 from (Wang et al., 2011). First, we rewrite the update rule of SGD with the pruning step as $W^{(t+1)} \leftarrow W^{(t)} - \eta^{(t)}\theta^{(t)}$, where $\theta^{(t)} = \nabla^{(t)} + E^{(t)}$, and $E^{(t)} = E_{\text{prune}}^{(t)} + E_{\text{dupl}}^{(t)}$ where we can see that the weight matrix degradation at the tth training iteration $E^{(t)}$ is equal to the sum of weight matrix degradation $E_{\text{prune}}^{(t)}$ due to pruning and weight matrix degradation $E_{\text{dupl}}^{(t)}$ due to weight duplication. Clearly, $E_{\text{prune}}^{(t)} = 0$ if no pruning is used, and $E_{\text{dupl}}^{(t)} = 0$ if no duplication is used at the tth training iteration. Note that, in contrast to (Wang et al., 2011), we also included the weight duplication degradation. The relative progress towards the optimal solution W^* at the tth round $D^{(t)}$ can be lower bounded as

$$
D^{(t)} = \frac{\|W^{(t)} - W^*\|^2 - \|W^{(t)} - \eta^{(t)}\nabla^{(t)} - \eta^{(t)}E^{(t)} - W^*\|^2}{\lambda}
$$

$$
= - (\eta^{(t)})^2 \|\theta^{(t)}\|^2 + 2\eta^{(t)}\|E^{(t)}\|W^{(t)} - W^*\| + 2\eta^{(t)}\|\nabla^{(t)}(W^{(t)} - W^*)\|
$$

$$
\geq 1 - (\eta^{(t)})^2 \|\theta^{(t)}\|^2 - 2\eta^{(t)}\|E^{(t)}\| (2 + c)(1 + h) + 2
$$

$$
+ \frac{(2 + c)(1 + h) + 2}{\lambda} \left(\mathcal{L}^{(t)}(W^{(t)}) - \mathcal{L}^{(t)}(W^*) + \frac{\lambda}{2}\|W^{(t)} - W^*\|^2\right),
$$

where $h = p/(1 - \beta)$. For the second term in the r.h.s. of the inequality in (2), we first bounded $\|W^{(t)}\|$ as

$$
\|W^{(t)}\| \leq \frac{(1 - \eta^{(t-1)})\lambda}{\lambda} \|W^{(t-1)}\| + 2\eta^{(t-1)} + \|\Delta_{\text{prune}} W^{(t-1)}\| + \|\Delta_{\text{dupl}} W^{(t-1)}\|
$$

$$
\leq \frac{t - 2}{t - 1} \|W^{(t-1)}\| + \frac{2}{(t - 1)\lambda} + \frac{c}{(t - 1)\lambda} + \frac{2 + c}{\lambda}
$$

$$
\leq \frac{1}{t - 1} \|W^{(0)}\| + \frac{2(t - 1)}{(t - 1)\lambda} + \frac{(t - 1)c}{(t - 1)\lambda} + \sum_{i=0}^{T-1} p\beta^i \frac{2 + c}{\lambda} \lambda \leq \frac{2 + c}{\lambda} (1 + h),
$$

where, in contrast to (Wang et al., 2011), we added the $\|\Delta_{\text{dupl}} W^{(t-1)}\|$ term equal to the norm of the duplicated weight. This term is upper bounded by $(2 + c)/\lambda$, as the norm of any weight is upper bounded by the weight matrix norm when weight duplication is not used during training (Wang et al., 2011). The duplication probability p drops by a factor of β whenever the weight duplication is performed, introducing the multiplication factor of $\sum_{t=0}^{T-1} p\beta^i$ to the total weight matrix norm degradation due to duplication, where the sum of geometric sequence of duplication probabilities is upper bounded by $h = p/(1 - \beta)$. We then use triangle inequality to bound $\|W^{(t)} - W^*\| \leq (2 + c)(1 + h)/\lambda + 2/\lambda$ by using the fact that $\|W^*\| \leq 2/\lambda$ according to the result in (Kivinen et al., 2002). Lastly, the third term in the r.h.s. of the inequality in (2) was obtained using function $\mathcal{L}^{(t)}(W^{(t)})$’s λ-strong convexity (Shalev-Shwartz & Singer, 2007).

Dividing both sides of inequality (2) by $2\eta^{(t)}$ and rearranging, we obtain

$$
\mathcal{L}^{(t)}(W^{(t)}) - \mathcal{L}^{(t)}(W^*) \leq \frac{D^{(t)}}{2\eta^{(t)}} - \frac{\lambda}{2}\|W^{(t)} - W^*\|^2 + \frac{\eta^{(t)}\|\theta^{(t)}\|^2}{2} + \frac{(2 + c)(2 + h)}{\lambda}\|E^{(t)}\|,
$$

(4)
Summing over all t and dividing by T, we obtain
\[
\frac{1}{T} \left(\sum_{t=1}^{T} \mathcal{L}^{(t)}(W^{(t)}) - \sum_{t=1}^{T} \mathcal{L}^{(t)}(W^*) \right) \leq \frac{1}{T} \sum_{t=1}^{T} \frac{D^{(t)}}{2\eta^{(t)}} - \frac{1}{T} \sum_{t=1}^{T} \frac{\lambda}{2} \|W^{(t)} - W^*\|^2
\]
\[
+ \frac{1}{2T} \sum_{t=1}^{T} \eta^{(t)} \|\theta^{(t)}\|^2 + \frac{(2 + c)(2 + h)}{T\lambda} \sum_{t=1}^{T} \|E^{(t)}\|.
\]
\[
\text{(5)}
\]
We bound the first and second terms in the r.h.s. of inequality (5) as follows,
\[
\frac{1}{2T} \sum_{t=1}^{T} \left(\frac{D^{(t)}}{\eta^{(t)}} - \lambda \|W^{(t)} - W^*\|^2 \right) = \frac{1}{2T} \left(\frac{1}{\eta^{(1)}} - \lambda \right) \|W^{(1)} - W^*\|^2 + \frac{1}{\eta^{(T)}} \|W^{(T+1)} - W^*\|^2
\]
\[
\sum_{t=2}^{T} \left(\frac{1}{\eta^{(t)}} - \frac{1}{\eta^{(t-1)}} - \lambda \right) \|W^{(t)} - W^*\|^2 - \frac{1}{\eta^{(T)}} \|W^{(T+1)} - W^*\|^2
\]
\[
= 1 - \frac{1}{2T\eta^{(T)}} \|W^{(T+1)} - W^*\|^2 \leq 0.
\]
In =1, the first and second terms vanish after plugging in $\eta_t \equiv 1/(\lambda t)$.

Next, we bound the third term in the r.h.s. of inequality (5) as follows,
\[
\frac{1}{2T} \sum_{t=1}^{T} \eta^{(t)} \|\theta^{(t)}\|^2 = \frac{1}{2T} \sum_{t=1}^{T} \eta^{(t)} (\|\nabla^{(t)}\| + \|E_{\text{prune}}^{(t)}\| + \|E_{\text{dupl}}^{(t)}\|)^2
\]
\[
\leq \frac{1}{2T} \sum_{t=1}^{T} \frac{1}{\lambda t} \left((2 + c)(1 + h) + 2 + c + pt\beta^t(2 + c)(1 + h) \right)^2
\]
\[
\leq \frac{1}{2T\lambda} \sum_{t=1}^{T} \frac{1}{t} \left((2 + c)(2 + h) + pt\beta^t(2 + c)(2 + h) \right)^2
\]
\[
= \frac{(2 + c)^2(2 + h)^2}{2T\lambda} \sum_{t=1}^{T} \frac{1}{t}(1 + pt\beta^t)^2
\]
\[
= \frac{(2 + c)^2(2 + h)^2}{2T\lambda} \left(\sum_{t=1}^{T} \frac{1}{t} + 2p \sum_{t=1}^{T} \beta^t + p^2 \sum_{t=1}^{T} t\beta^{2t} \right)
\]
\[
\leq \frac{1}{2T\lambda} \frac{(2 + c)^2(2 + h)^2}{(1 - \beta)^2} \left(\ln(T) + 1 + \frac{2p}{1 - \beta} + \frac{p^2 \beta^2}{1 - \beta^2} \right)
\]
\[
\leq \frac{(2 + c)^2(2 + h)^2}{2T\lambda} \left(\frac{3p}{(1 - \beta)^2} + \ln(T) + 1. \right)
\]
In ≤ 1 we bound the terms in the parentheses according to the divergence rate of the harmonic series, as well as according to upper bounds on the sum of low-order power series.

Next, we bound the fourth term in the r.h.s. of inequality (5) as follows,
\[
\frac{(2 + c)(2 + h)}{T\lambda} \sum_{t=1}^{T} \|E^{(t)}\| \leq \frac{(2 + c)(2 + h)}{T\lambda} \sum_{t=1}^{T} (\|E_{\text{prune}}^{(t)}\| + \|E_{\text{dupl}}^{(t)}\|)
\]
\[
\leq \frac{(2 + c)(2 + h)}{T\lambda} \sum_{t=1}^{T} (c + pt\beta^t(2 + c)(1 + h))
\]
\[
\leq \frac{(2 + c)(2 + h)c}{\lambda} + \frac{(2 + c)^2(2 + h)^2}{T\lambda} p \sum_{t=1}^{T} t\beta^t
\]
\[
\leq \frac{(2 + c)^2(2 + h)}{\lambda} + \frac{(2 + c)^2(2 + h)^2}{T\lambda} \frac{p\beta}{(1 - \beta)^2}.
\]
We bounded \(\|E_{prune}\| \) using the bound on \(\|\Delta W_{prune}\| \), and bounded \(\|E_{dupl}\| \) using the bound on \(\|W\| \). We obtain (1) by combining inequality (5) with inequalities (6), (7), and (8).

\[R(f) \leq \tilde{R}_N(f) + \frac{4 + 4K\|W\|}{\sqrt{N}} + (\|W\| + 1)\sqrt{\frac{\ln \frac{1}{\delta}}{2N}}, \]

(9)

where \(K = \sum_{i=1}^{M} b_i \sum_{j \neq i} b_j \), and \(b_i \) is the number of weights for the \(i^{th} \) class.

Proof. The proof closely follows the proof of Theorem 6 from (Guermeur, 2010). For the clarity of notation, we introduce \(f_i(x) = g_i(x) \) and \(f_{i,j}(x) = w_i^j x \), \(i \in \{1, \ldots, M\}, j \in \{1, \ldots, b_i\} \). Then, let \(\mathcal{F} \) stand for the product space \(\mathcal{F}^M \), so that \((f_1(\cdot), \ldots, f_M(\cdot)) \in \mathcal{F} \). Additionally, in order to retain the generality of the Theorem and its proof, in the following we use \(\kappa \) to denote a kernel function as in (Guermeur, 2010), and \(\Phi(x) \) to denote a kernel mapping from the original input space to the feature space induced by the kernel function \(\kappa \). However, note that the MM model, although being non-linear classifier, uses a linear kernel to compare each weight \(w_{i,j} \) to a new data point, and in the following we can also set \(\Phi(x) = x \). Further, let \(\|w\|_{\infty} \leq \Lambda_w \) and let \(\forall x \in \mathbb{R}^D, \|x\| \leq \Lambda_{\Phi(\mathbb{R}^D)} \).

It follows,

\[\forall \tilde{f} \in \mathcal{F}, R(\tilde{f}) \leq \tilde{R}(\tilde{f}). \]

(10)

Consequently,

\[\forall \tilde{f} \in \mathcal{F}, R(\tilde{f}) \leq \tilde{R}_N(\tilde{f}) + \sup_{\tilde{f} \in \mathcal{F}} \left(\tilde{R}(\tilde{f}) - \tilde{R}_N(\tilde{f}) \right). \]

(11)

The rest of the proof consists in the computation of an upper bound on the supremum of the empirical process appearing in (11). Let \(Z \) denote a random pair \((X, Y)\) and \(Z_i \) its copies which constitute the \(N \)-sample \(D_N : D_N = \{Z_i\}_{1 \leq i \leq N} \). After simplifying notation this way, the bounded differences inequality can be applied to the supremum of interest by setting \(n = N, (T_i)_{1 \leq i \leq n} = D_N \) (i.e., \(T_i = Z_i \)), and \(f(T_1, \ldots, T_n) = \sup_{\tilde{f} \in \mathcal{F}} \left(R(\tilde{f}) - \tilde{R}_N(\tilde{f}) \right) \). The functions \(\tilde{f} \in \mathcal{F} \) take their values in the interval \([-B_{\mathcal{F}}, B_{\mathcal{F}}]^M\), with \(B_{\mathcal{F}} = \Lambda_w \Lambda_{\Phi(X)} \). Consequently, the loss function associated with the risk \(\tilde{R} \) takes its values in the interval \([0, K_{\mathcal{F}}]\). We can then get the following result (Guermeur, 2010): With probability of at least \(1 - \delta \),

\[\sup_{\tilde{f} \in \mathcal{F}} \left(\tilde{R}(\tilde{f}) - \tilde{R}_N(\tilde{f}) \right) \leq \mathbb{E}_{D_N} \sup_{\tilde{f} \in \mathcal{F}} (R(\tilde{f}) - \tilde{R}_N(\tilde{f})) + K_{\mathcal{F}} \sqrt{\frac{\ln \frac{1}{\delta}}{2N}}. \]

Further, it can be shown that

\[\mathbb{E}_{D_N} \sup_{\tilde{f} \in \mathcal{F}} (R(\tilde{f}) - \tilde{R}_N(\tilde{f})) \leq 4 \left(\frac{1}{\sqrt{N}} + \mathbb{E}_{\sigma, D_N} \left[\sup_{\tilde{f} \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \sigma_i \frac{1}{2} \left(\tilde{f}_{Y_i}(X_i) - \max_{k \neq Y_i} \tilde{f}_k(X_i) \right) \right] \right). \]

(13)

In order to address the specific case of the considered MM model, we will introduce a different definition of \(\text{cat} \) than in the proof of Theorem 6 in (Guermeur, 2010). For \(n \in \mathbb{N}^+ \), let \(z^n = (x_i, y_i)_{1 \leq i \leq n} \in (\mathbb{R}^D \times \mathcal{Y})^n \) and let \(\text{cat} \) be a mapping from \(\mathcal{F} \times \mathbb{R}^D \times \mathcal{Y} \) into \(\{1, \ldots, M\}^2 \times \mathbb{N}^2 \) such that

\[\forall (\tilde{f}, x, y) \in \mathcal{F} \times \mathbb{R}^D \times \mathcal{Y}, \text{cat}(\tilde{f}, x, y) = (k, l, p, q) \Rightarrow (k = y) \land (l \neq y) \land \left(\tilde{f}_k(x) = \max_{i \neq y} \tilde{f}_i(x) \right) \land (p = \arg \max_j w^T_{k,j} x) \land (q = \arg \max_j w^T_{l,j} x). \]

(14)

The rest of the proof is straightforward modification of the proof of Theorem 6 in (Guermeur, 2010). By construction of
By substitution in the right-hand side of (16), and then in the right-hand side of (15), we get

\[\Lambda \text{cat} \]

As a concluding remark, we note that the main difference between proofs of Theorem 6 from (Guermeur, 2010) and the concludes the proof.

References
