Random Kernel Perceptron on ATTiny2313 Microcontroller

Nemanja Djuric, Slobodan Vucetic

Department of Computer and Information Sciences
Temple University

SensorKDD, July 25th, 2010, Washington DC
Kernel Perceptron

- Predictor

\[f(\mathbf{x}) = \text{sign} \left(\sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i) \right) \]

- Costs
 - \(O(N)\) space
 - \(O(N)\) update time
 - \(O(N^2)\) total training time

\[f(\mathbf{x}) = 0 \text{ at time } t = 0 \]

Inputs: data sequence \(((\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_N, y_N))\)

Output: trained Kernel Perceptron \(f(\mathbf{x})\)

while (training set not empty)

\[
\begin{align*}
 &\text{if } (y_i \cdot f(\mathbf{x}_i) > 0) \\
 &\quad \alpha_i = 0 \\
 &\text{else} \\
 &\quad \alpha_i = y_i \\
\end{align*}
\]

\[f(\mathbf{x}) \leftarrow f(\mathbf{x}) + \alpha_i \cdot K(\mathbf{x}_i, \mathbf{x}) \]
Random Budget Kernel Perceptron

Idea

- assign support vector budget T
- when budget is exceeded, remove a random SV
- resulting predictor

$$f(x) = \text{sign} \left(\sum_{i=1}^{T} \alpha_i K(x,x_i) \right)$$

Costs

- $O(1)$ space
- $O(1)$ update time
- $O(N)$ training time

Inputs : data sequence $((x_1, y_1), ..., (x_N, y_N))$, budget T
Output : support vector set $SV = \{SV_i, i = 1 \ldots I\}$

$I \leftarrow 0; i \leftarrow 1$
$SV = \emptyset$
for $i = 1 : N$
{
 if $(y_i \cdot \sum_{j=1}^{I} y_j \cdot K(x_i, x_j) \leq 0)$
 {
 if ($I == T$)
 new = random(I)
 else
 {
 $I \leftarrow I + 1$
 new $\leftarrow I$
 }
 }$SV_{new} = (x_i, y_i)$
}
Motivation

- Random Kernel Perceptron
 - online algorithm
 - low cost
 - easy to implement
 - can solve nonlinear problems
 - accurate

- It still **CANNOT** be implemented on the simplest computers
 - it uses floating-point operations
 - model size easily exceeds available memory

- Goal: Implement Kernel Perceptron on microcontrollers

- Applications
 - sensor networks
 - low-cost online data mining
 - resource-constrained environments
Microcontroller

- ATTiny2313
 - one of the most primitive processors
 - very cheap (< $1)

- Characteristics
 - 128 bytes to store:
 - Kernel Perceptron
 - working variables
 - 2 Kbytes to store program
 - 4 MHz processor speed
 - fixed-point arithmetic (integers)
Some details

- Use Gaussian kernel: \(K(x, x_i) = \exp(\frac{\|x - x_i\|^2}{2^A}) \)

- Resource-saving strategies
 - Quantization of attributes using \(b \) bits
 - trade-off between #SV and #bits
 - quantization loss
 - Approximation of kernel function using only integers and integer calculations
 - we devised an iterative procedure that uses look-up table
 - approximation loss
Results

- Fixed-point vs. floating-point method
- Approximation accuracy (kernel width = 2^A)
Results

- Accuracy on benchmark datasets

Banana dataset

Checkerboard dataset
Results

- Implementation on microcontroller
- Double-precision Kernel Perceptron: 89.2% accuracy
- Much less memory, faster execution time

<table>
<thead>
<tr>
<th>Banana dataset</th>
<th>4 bits</th>
<th>6 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Fixed</td>
<td>Float</td>
</tr>
<tr>
<td>Data [B] (max 128B)</td>
<td>128</td>
<td>379</td>
</tr>
<tr>
<td>Program [B] (max 2048B)</td>
<td>1720</td>
<td>6012</td>
</tr>
<tr>
<td>Time [ms]</td>
<td>1985</td>
<td>7505</td>
</tr>
<tr>
<td>Accuracy [%]</td>
<td>81.00</td>
<td>81.08</td>
</tr>
<tr>
<td># of SVs</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data memory</th>
<th>After quantization</th>
<th>Before (Double-precision)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Working variables</td>
</tr>
<tr>
<td>Memory size</td>
<td>70B</td>
<td>58B</td>
</tr>
</tbody>
</table>
Conclusions

- Implemented Kernel Perceptron on ATTiny2313 microcontroller

- Fixed-point calculations of prediction
 - key for implementation
 - low data and program memory
 - speeds up calculations
 - only slightly decreases accuracy

- Our results
 - useful in establishing lower bounds on necessary computational resources for online learning
 - open doors for novel application of data mining, such as data mining from sensor data
Thank you!

- More details in the paper
- Questions? E-mail to nemanja.djuric@temple.edu