Biomedical Data Mining with Matrix Models

SDM 2016 Tutorial Part II
May 5, 2016

Ping Zhang
Center for Computational Health
IBM T.J. Watson Research Center
pzhang@us.ibm.com
Recent Applications in Biomedicine

- Similarity Network Fusion and Identification of Cancer Subtypes
- Joint Matrix Factorization and Drug Repositioning
- Nonnegative Matrix Tri-Factorization and Patient-Specific Data Fusion
- Tensor Factorization and Patient Phenotyping
Omics technologies in biomedicine

Patient similarity networks

How to combine different networks?

Issues:
• Large number of measurements, small sample sizes ($p >> n$)
• Need to integrate common and complementary information
• Not all measurements can be normalized and mapped to the same unit
Construct similarity networks (1)

Patient similarity:

$$W(i, j) = exp\left(\frac{\rho(x_i, x_j)^2}{\eta \xi_{ij}^2}\right)$$

Adjacency matrix:

$$P(i, j) = \frac{W(i, j)}{\sum_{k \in V} W(i, k)}$$

1) $$\mathcal{W}(i, j) = \begin{cases} W(i, j) & \text{if } x_j \in KNN(x_i) \\ 0 & \text{otherwise} \end{cases}$$

2) $$S(i, j) = \frac{\mathcal{W}(i, j)}{\sum_{x_k \in KNN(x_i)} \mathcal{W}(i, k)}$$
Construct similarity networks (2)
Combine networks (1)

Sample Similarity Networks

Fusion

Can also be extended to more than 2 data types

\[
P_{t+1}^{(1)} = S^{(1)} \times P_{t}^{(2)} \times (S^{(1)})^T
\]

\[
P_{t+1}^{(2)} = S^{(2)} \times P_{t}^{(1)} \times (S^{(2)})^T
\]
Combine networks (2)

Sample Similarity Networks → Fusion → Fused Similarity Network

\[\frac{||W_{t+1} - W_t||}{||W_t||} \leq 10^{-6} \]
Case study: glioblastoma multiforme (GBM)

1491 genes

12042 message genes

534 miRNA
Clinical properties of the subtypes

- **Survival Probability vs. Survival Time (months)**
 - Subtype 1
 - Subtype 2
 - Subtype 3

- **Age (years)**
 - Subtype 1
 - Subtype 2
 - Subtype 3

- **P-values**
 - Survival probability: 2×10^{-4}
 - Age: 3×10^{-5}
Biological characterization of the subtypes
From subtype-based to network-based outcome prediction

Current Analytics

Future Analytics

IDENTIFY SUBTYPE

SURVIVAL LIKELIHOOD FOR THE NEW PATIENT

PREDICT NEW PATIENTS CLINICAL OUTCOMES MORE PRECISELY USING THE WHOLE NETWORK
Comparisons on an METABRIC breast cancer data

Cox objective

\[l_p(z) = \sum_{i=1}^{n} \delta_i \left(x_i^T z - \log \left(\sum_{j \in R(t_i)} \exp(x_j^T z) \right) \right) \]

Network-regularized objective

\[l_p(z) = \sum_{i=1}^{n} \delta_i \left(x_i^T z - \log \left(\sum_{j \in R(t_i)} \exp(x_j^T z) \right) \right) - \lambda \sum_{i,j} (x_i^T z - x_j^T z)^2 w_{ij} \]

CNV and expression data
Discovery: 997 patients, Validation: 995 patients

<table>
<thead>
<tr>
<th></th>
<th>PAM50 (5 clusters)</th>
<th>iCluster (10 clusters)</th>
<th>SNF (5 clusters)</th>
<th>SNF (10 clusters)</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>P value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>3.0 \times 10^{-9}</td>
<td>1.2 \times 10^{-14}</td>
<td>6.10 \times 10^{-11}</td>
<td>3.31 \times 10^{-12}</td>
<td>–</td>
</tr>
<tr>
<td>Validation</td>
<td>1.7 \times 10^{-9}</td>
<td>2.9 \times 10^{-11}</td>
<td>5.12 \times 10^{-13}</td>
<td>7.86 \times 10^{-12}</td>
<td>–</td>
</tr>
<tr>
<td>CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>0.560</td>
<td>0.621</td>
<td>0.638</td>
<td>0.638</td>
<td>0.720</td>
</tr>
<tr>
<td>Validation</td>
<td>0.551</td>
<td>0.605</td>
<td>0.633</td>
<td>0.633</td>
<td>0.706</td>
</tr>
</tbody>
</table>

Summary of patient networks framework

• Creates a unified view of patients based on multiple heterogeneous sources
• Integrates gene and non-gene based data
• Robust to different types of noise
• Obtain superior results on regular tasks such as subtyping and outcome prediction
• Scalable

Recent Applications in Biomedicine

• Similarity Network Fusion and Identification of Cancer Subtypes

Joint Matrix Factorization and Drug Repositioning

• Nonnegative Matrix Tri-Factorization and Patient-Specific Data Fusion

• Tensor Factorization and Patient Phenotyping
The Challenge of Drug Discovery

Drug repositioning

- **Drug repositioning** (also known as Drug repurposing, Drug re-profiling, Therapeutic Switching and Drug re-tasking) is the application of known drugs and compounds to new indications (i.e., new diseases).

<table>
<thead>
<tr>
<th>Drug</th>
<th>Original indication</th>
<th>New indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viagra</td>
<td>Hypertension</td>
<td>Erectile dysfunction</td>
</tr>
<tr>
<td>Wellbutrin</td>
<td>Depression</td>
<td>Smoking cessation</td>
</tr>
<tr>
<td>Thalidomide</td>
<td>Antiemetic</td>
<td>Multiple Myeloma</td>
</tr>
</tbody>
</table>

- The repositioned drug has already passed a significant number of toxicity and other tests, its safety is known and the risk of failure for reasons of adverse toxicology are reduced.
Shorter timelines & less risk

Computational drug repositioning
Drug Resources and Disease Resources

Drug

Chemical Structure

Target Proteins

Side-effect Keywords

Calculate drug/disease similarities

Disease

Phenotype/Symptom

Ontology

Disease Gene
Joint Matrix Factorization (JMF)

Outputs:
1. predicted additional drug-disease associations
2. interpretable importance of different information sources
3. latent drug and disease groups as by-products
JMF as an optimization problem

- We aim to analyze the drug-disease network by minimizing the following objective:
 \[J = J_0 + \lambda_1 J_1 + \lambda_2 J_2 \]

- The reconstruction loss of observed drug-disease associations:
 \[J_0 = \| \Theta - U \Lambda V^T \|_F^2 \]
 Similar Drugs/diseases (latent groups) have similar behaviors

- The reconstruction loss of drug similarities:
 \[J_1 = \sum_{k=1}^{K_d} \omega_k \| D_k - U U^T \|_F^2 + \delta_1 \| \omega \|_2^2 \]
 Reconstruct integrated drug/disease networks

- The reconstruction loss of disease similarities:
 \[J_2 = \sum_{l=1}^{K_s} \pi_l \| S_l - V V^T \|_F^2 + \delta_2 \| \pi \|_2^2 \]

- Putting everything together, we obtained the optimization problem to be resolved:
 \[\min_{U,V,\Lambda,\Theta,\omega,\pi} J, \text{ subject to } U \geq 0, V \geq 0, \Lambda \geq 0, \omega \geq 0, \omega^T 1 = 1, \pi \geq 0, \pi^T 1 = 1, P_\Theta(\Theta) = P_\Omega(R) \]
BCD approach for solving the problem

- **Block Coordinate Descent (BCD) strategy:** The BCD approach works by solving the different groups of variables alternatively until convergence. At each iteration, it solves the optimization problem with respect to one group of variables with all other groups of variables fixed.

Algorithm 1: A BCD Approach for Solving Problem (11)

Require: \(\lambda_1 \geq 0, \lambda_2 \geq 0, \delta_1 \geq 0, \delta_2 \geq 0, K_d > 0, K_s > 0, \{D_k\}_{k=1}^{K_d}, \{S_j\}_{j=1}^{K_s}, R \)

1. Initialize \(\omega = (1/K_d)1 \in \mathbb{R}^{K_d \times 1}, \pi = (1/K_s)1 \in \mathbb{R}^{K_s \times 1} \)

2. Initialize \(U \) and \(V \) by performing Symmetric Nonnegative Matrix Factorization on \(\tilde{D} = \sum_{k=1}^{K_d} \omega_k D_k \) and \(\tilde{S} = \sum_{j=1}^{K_s} \pi_j S_j \).

3. **while** Not Converge **do**

4. Solve \(\Theta \) as described in section 2 (as a constrained Euclidean projection)

5. Solve \(\omega \) and \(\pi \) as described in section 3 (as a standard Euclidean projection onto a simplex)

6. Solve \(\Lambda \) as described in section 4 (as a nonnegative quadratic optimization problem)

7. Solve \(U \) as described in section 5 (as a nonnegative quadratic optimization problem)

8. Solve \(V \) as described in section 6 (as a nonnegative quadratic optimization problem)

9. **end while**

Computational complexity is \(O(Rrmn) \), where \(R \) is the number of BCD iterations, and \(r \) is the average PGD iterations when updating \(\Lambda, U, \) and \(V \).
Data Description

- Benchmark dataset was extracted from NDF-RT, spanning 3,250 treatment associations between 799 drugs and 719 diseases
- **Three** 799×799 matrices were used to represent drug similarities between 799 drugs from different perspectives
- **Three** 719×719 matrices were used to represent disease similarities between 719 human diseases from different perspectives
ROC comparisons of five drug repositioning approaches
Distribution of weights of the similarity weight vectors obtained by JMF

(a) Drug similarity weight vector

(b) Disease similarity weight vector
Top 10 drugs for diseases Alzheimer's Disease (AD) and Systemic Lupus Erythematosus (SLE)

(a) Top 10 drugs predicted for AD

<table>
<thead>
<tr>
<th>Drug</th>
<th>Prediction Score</th>
<th>Clinical Evidence?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selegiline*</td>
<td>0.7091</td>
<td>—</td>
</tr>
<tr>
<td>Carbidopa</td>
<td>0.6924</td>
<td>No</td>
</tr>
<tr>
<td>Amantadine</td>
<td>0.6897</td>
<td>No</td>
</tr>
<tr>
<td>Procyclidine</td>
<td>0.6826</td>
<td>No</td>
</tr>
<tr>
<td>Valproic Acid*</td>
<td>0.6745</td>
<td>—</td>
</tr>
<tr>
<td>Metformin</td>
<td>0.6543</td>
<td>Yes</td>
</tr>
<tr>
<td>Bexarotene</td>
<td>0.6426</td>
<td>Yes</td>
</tr>
<tr>
<td>Neostigmine</td>
<td>0.6385</td>
<td>No</td>
</tr>
<tr>
<td>Galantamine*</td>
<td>0.6348</td>
<td>—</td>
</tr>
<tr>
<td>Nilvadipine</td>
<td>0.6159</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(b) Top 10 drugs predicted for SLE

<table>
<thead>
<tr>
<th>Drug</th>
<th>Prediction Score</th>
<th>Clinical Evidence?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desoximetasone</td>
<td>0.7409</td>
<td>No</td>
</tr>
<tr>
<td>Azathioprine*</td>
<td>0.7269</td>
<td>—</td>
</tr>
<tr>
<td>Leflunomide</td>
<td>0.7078</td>
<td>Yes</td>
</tr>
<tr>
<td>Fluorometholone</td>
<td>0.7054</td>
<td>No</td>
</tr>
<tr>
<td>Triamcinolone*</td>
<td>0.6862</td>
<td>—</td>
</tr>
<tr>
<td>Beclomethasone</td>
<td>0.6522</td>
<td>No</td>
</tr>
<tr>
<td>Etodolac</td>
<td>0.6445</td>
<td>No</td>
</tr>
<tr>
<td>Hydroxychloroquine*</td>
<td>0.6374</td>
<td>—</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>0.6371</td>
<td>Yes</td>
</tr>
<tr>
<td>Mercaptopurine</td>
<td>0.6150</td>
<td>No</td>
</tr>
</tbody>
</table>

* denotes the drug is known and approved to treat the disease

Repositioning candidates:
- Selegiline
- Carbidopa
- Amantadine
- Procyclidine
- Valproic Acid
- Metformin
- Bexarotene
- Neostigmine
- Galantamine
- Nilvadipine
Summary of joint matrix factorization framework

• We proposed a general computational framework, to explore drug-disease associations from multiple drug/disease sources
• Our method could help generate drug repositioning hypotheses, which will benefit patients by offering more effective and safer treatments
• The computational framework and its solution can be used in other applications (gene-disease, drug-patient, etc.)

Recent Applications in Biomedicine

• Similarity Network Fusion and Identification of Cancer Subtypes
• Joint Matrix Factorization and Drug Repositioning

Nonnegative Matrix Tri-Factorization and Patient-Specific Data Fusion

• Tensor Factorization and Patient Phenotyping
Network data integration

Ovarian cancer patients cohort

TCGA: SMP
BioGRID: PPI, GI
KEGG: MI
DrugBank: DTI
DrugBank: SMILES
Patient-specific data fusion

Co-clustering: patients, genes, and drugs

Tasks:
1. patient stratification
2. driver gene prediction
3. drug-target interaction prediction

Solved by Graph-regularized Non-negative Matrix Tri-Factorization (GNMTF)

Matrix models in biomedicine
Recent Applications in Biomedicine

• Similarity Network Fusion and Identification of Cancer Subtypes
• Joint Matrix Factorization and Drug Repositioning
• Nonnegative Matrix Tri-Factorization and Patient-Specific Data Fusion

Tensor Factorization and Patient Phenotyping
Phenotyping from Electronic Medical Records (EMR)

Phenotype (American Heritage Dictionary)
• The *observable* physical or biochemical *characteristics* of an organism, as determined by both genetic makeup and environmental influences.

Why phenotyping from EMR
• Mapping *noisy, incomplete*, and potentially *inaccurate* patient representation from EMR to meaningful medical concepts
• Extracting clinical meaningful groups of patients from EMR

<table>
<thead>
<tr>
<th>Diabetes Phenotype</th>
<th>Heart Failure Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseases of other endocrine glands</td>
<td>Other forms of heart disease</td>
</tr>
<tr>
<td>Complications of surgical and medical care</td>
<td>Complications of surgical and medical care</td>
</tr>
<tr>
<td></td>
<td>Symptoms</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular Procedures</td>
</tr>
<tr>
<td></td>
<td>Hematology and Coagulation Procedures</td>
</tr>
<tr>
<td></td>
<td>Evaluation and Management of Other Outpatient Services</td>
</tr>
<tr>
<td></td>
<td>Surgical Procedures on the Cardiovascular System</td>
</tr>
<tr>
<td></td>
<td>Chemistry Pathology and Laboratory Tests</td>
</tr>
<tr>
<td></td>
<td>Organ or Disease Oriented Panels</td>
</tr>
<tr>
<td></td>
<td>Hematology and Coagulation Procedures</td>
</tr>
<tr>
<td></td>
<td>Surgical Procedures on the Cardiovascular System</td>
</tr>
<tr>
<td></td>
<td>Chemistry Pathology and Laboratory Tests</td>
</tr>
</tbody>
</table>

Tensor representation for EMR

Capture structured source interactions (e.g. group of procedures to treat a disease)

Co-occurrences of events are captured in the tensor as binary values
CP factorization for EMR

A possible application of EHR-phenotyping

Tucker factorization for pathology reports

897 Lymphoma patient pathology report narrative text

Comparison of tensor modeling and factorization schemes

Challenges and opportunities: multiscale networks

Dynamic network: timeline of individualized genomic medicine

During an individual’s lifespan: from prewomb to tomb

Personalized multiscale networks to model dynamics of complex disease

DNA
Cell-specific RNA
Cytokines
Clinical labs
Mobile devices
Microbiome
Physiometrics

Dudley J. Big data in biology and medicine. Retrieved at www.aaas.org
Center for Computational Health @ IBM

Multiple Positions Available:
- Interns
- Postdocs
- Research Engineers
- Research Staff Members

Contact: pzhang@us.ibm.com
Thank you!!!