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Abstract. The advancement of GIS data models to allow the eŒective utilization
of very large heterogeneous geographic databases requires a new approach that
incorporates models of human cognition. The ultimate goal is to provide a
cooperative human-computer environment for spatial analysis. We describe the
pyramid framework as an example of this new approach within the context of
some important aspects of how humans conceptually store spatial information.
The proposed framework provides the means to create multiple structural inter-
pretations of observed geographic data and the ability to build knowledge hier-
archies through the application of data mining and other statistical techniques.

1. Introduction
The representation of geographic phenomena in digital databases is one of the

most central and fundamental issues in Geographic Information Science. Although
robust and e� cient techniques for representing a wide variety of modern business
enterprise data have been developed, the availability of representational techniques
that are up to the task of modern GIS requirements for very large, shared geographic
databases is still problematic. The representation of geographic phenomena in a way
that is appropriate for a wide range of application contexts has also proven to be
particularly challenging in recent research (UCGIS 1996, Mark 1999). One reason
for these de� ciencies is that the conceptual models currently employed for digital
geographic data representation do not incorporate any explicit consideration of how
humans cognitively store and use geographic knowledge (Peuquet 1988, 1994,
Couclelis 1993). The shortcomings of these conventional GIS data models’ ability
to represent information in a way that is more ‘natural’ to humans is now widely
acknowledged (Peuquet 1988, Frank 1992, Burrough and Frank 1995).

Conventional geographic databases have only been concerned with the storage
of observational data; higher-level knowledge derived from that data resided only in
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the head of the user, or in a separately de� ned model. This was eŒective when data
sets were relatively small, and the analyst could rely on his or her own knowledge
to guide searches of the data and interpret it. However, given the current amount,
variety, and rate of accumulation of digital data, it is far beyond human capability
alone to eŒectively do this.

Many explorations in improving methods for geographic representation have
employed the standardized relational data model of Relational Database
Management Systems (RDBMS) and object oriented data model design techniques
(e.g. Herring 1992, Worboys 1994). Nevertheless, geographic data, whether they are
called vector/raster or object/� eld representations, are still conceptually divided into
the same point, line, area or grid cell units within the ‘wrapper’ of RDBMS or object
oriented design. In essence, these approaches are generally utilized at the implementa-
tional level with little change to the underlying conceptual model.

There is a considerable tradition within Geography that explores how humans
cognitively represent geographic-scale environments (Downs and Stea 1973, Golledge
1993). We believe it is this perspective, combined with the variety of cognitive
evidence from Psychology, that needs to be integrated into GIS database design in
order to advance geographic database representation. A fundamentally new approach
to database modelling is needed that begins at the conceptual level. A GIS database
should present a logical view of the data, as well as the derived higher-level knowledge
that corresponds to people’s own cognitive view. While a number of GIS researchers
have explored characteristics of cognitive representation and conceptual modelling
(e.g. Nyerges 1991, Usery 1993, Mark and Frank 1996), they have not extended their
� ndings into a usable framework for database representation. Raper and Livingstone
(1995) perhaps have come closest, having developed a speci� c representation for
observational geomorphologic data within a cognitive context.

In this paper we describe a general framework for geographic representation that
seeks to integrate the principles of cognition into geographic database representation .
We do not attempt to imitate every known aspect of human cognition within a database
representation ; rather, we identify the primary organizationa l elements of cognition
that can provide a generic framework within which to facilitate human-machine inter-
action and at the same time enhance computing e� ciency. The proposed framework
and the conceptual modelling approach built upon it allow for the derivation of an
implementable geographical model capable of representing both observationa l data, as
well as higher-level semantic abstractions that can be derived from that data.

The framework presented in this paper, which we call the pyramid framework,
is intended to: 1) allow the non-exhaustive search of observational data, 2) facilitate
the exploration of new data by quickly identifying patterns and anomalies, and
3) provide a more integrated modelling environment than is currently possible in
conventional GIS. In the remainder of this paper, we � rst review key principles of
how humans store and acquire geographic knowledge and how these principles have
been integrated into geographic database representations thus far. We then describe
the pyramid framework and how it incorporates these key elements. Finally, we
present an example conceptual model for representing meteorological phenomena.

2. Cognitive representation
2.1. Category theory

Cognitively, we reduce the vast amount of knowledge we store to manageable
proportions by grouping knowledge into categories. Categories are also key to
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organizing our available synthesized spatial knowledge. They are the repositories of
our beliefs about the world, including known entities, the known properties of those
entities and relationships between them (Stevens and Coupe 1978, Tversky and
Hemenway 1983, Eastman 1985). Besides things, we can categorize places, events,
actions, spatial relationships, social relationships, and many other types of entities,
both concrete and abstract, over an enormous range (LakoŒ1987). We also group
categories into higher-level categories that are related in complex ways.

A category is a conceptual grouping of entities that are somehow considered similar,
or are treated in a similar way. They are assumed to share common properties, so that
these properties can also be considered characteristic of the category. We have categories
for everything we think about, and we tend to attribute a real existence to them. The
groundbreaking research of Eleanor Rosch (Rosch 1973, 1978, 1983, Rosch and Mervis
1975) and subsequent research has since demonstrated that categories as known in the
mind are a function of properties of the elements within the environment, but as
interpreted by the perceiver. In other words, we understand the world in terms of our
own stored knowledge, which is organized by categories.

Given Rosch’s (1978) assertion that the form of cognitive category systems allows
the retention and use of a maximum amount of knowledge with minimum eŒort,
she further posited that categories are arranged in hierarchies. The vertical dimension
of any particular hierarchical system of categories (e.g. animal, dog, collie) concerns
the amount of inclusiveness of the category. Categories at the same level across a
horizontal of the same hierarchical system (e.g. dog, cat, horse) would have the same
amount of inclusiveness. This, then, forms a taxonomy, wherein categories are related
to one another by means of class inclusion. The greater the level of abstraction, the
greater the inclusion and the higher the location in the hierarchy. Attributes that
are common to a class of objects are stored with that class, and all subordinate
categories inherit those common attributes. This functionally allows information
common to groups to be stored with minimum repetition.

The implication of this is that some levels of the hierarchy are more useful than
others in that they relate more directly to how elements of the world are perceived.
The most ‘useful’ level of category was termed by Rosch (1978) to be the basic-level
category. It is at this level that properties attributed to the speci� c categories mirror
those perceived in the real world. These are characterized by overall shape and
motor interaction and are the most general level in the hierarchy at which a mental
image can be formed. Thus, ‘chair’ is a basic-level category while ‘furniture’ is not.
Basic-level categories are located in the middle of any given taxonomy, and are the
� rst to be learned. Superordinate categories are added with increasing knowledge
and are useful when referring to groups of objects (Murphy and Wisniewski 1989).
Superordinate categories also provide spatial, taxonomic, and other types of linkages
between entities as explicitly stored relationships.

Our stored knowledge is, generally speaking, organized by kinds vertically within
the hierarchy (taxonomies) , and by parts (partonomies ) within categories. At the basic
level, our knowledge is mostly concerned with parts (Rosch 1978, Tversky and
Hemenway 1984). For example, chairs have seats. Parts determine shape, and hence
the way that an object will be perceived and imaged. We also impose this part-whole
structure on events, implying that our knowledge of event categories is structured very
much like our knowledge of physical object categories. (LakoŒand Johnson 1980) .

To increase the distinctiveness and � exibility of categories at all levels vertically
in any hierarchy, categories tend to become de� ned in terms of prototypes that
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contain the attributes most representative of items within that category. In other
words, categories have a graded internal structure (Rosch 1978). Thus, beanbags
and barstools would be less central members of the category ‘chair’ than the
straight-backed , four-legged type usually found in kitchens and dining rooms.

2.2. Category theory as applied to geographic knowledge
How does category theory apply to geographic categories? For objects that have

a physical manifestation in the real world (i.e. they are not totally abstract), shape
is still among the most important criteria for identi� cation. The shape identi� ed
with a particular type of geographic object can include an overall shape, as well as
the shapes of key component parts. As an example of geographic-scale objects, we
visually distinguish churches from other kinds of large structures primarily by their
distinctive overall shape, which is provided mainly by the distinctive shape of steeples,
a key element characteristic of churches.

Certainly, geographical entities also tend to be taxonomically arranged in nested
hierarchies. For example, country, region, state, city, and neighbourhood are concep-
tually arranged in a hierarchical order. There is also a container relationship built
into this hierarchy. In other words, for any set of speci� c examples (e.g. the US, New
England, Massachusetts, Boston, and Beacon Hill ) each entity is spatially contained
within the entity next above it in the hierarchy. A nested hierarchical structure of
cognitive geographic knowledge has been experimentally con� rmed by a number of
researchers (Stevens and Coupe 1978, Eastman 1985).

Tversky and Hemenway (1983) investigated whether or not Rosch’s basic-level
categories could be extended to environmenta l scenes, as well as geographic-scal e
objects. They found that, in human cognition, the preferred level of description of
objects embedded in spatial contexts is at the basic level. This level allows the greatest
amount of information about the scenes and objects involved. Thus, categories such as
beach and city provide much more information than the superordinate category of
outdoors , and the subordinate categories industrial city and Midwestern city provide
only marginally more information. Most information stored about basic-level scenes
and objects are observable objects and their properties. Indeed, the mention of the
term city to most people evokes images of tall buildings, dense residential development
and lots of tra� c, among other attributes . Lloyd et al. (1996) assert that the notion of
key information contained within basic-level categories being of parts also translates
into a container relationship for spatial categories: countries contain regions, which
contain states, which contain cities, which contain neighbourhoods .

The concept of schema addresses the cognitive use of a priori knowledge to
interpret and categorize new observational data. A schema is essentially a set of
information about a type of object (or other cognitively distinguishable ‘thing’, such
as an event) that is used to discover new instances of this type of object (Thorndyke
1984). For example, my schema for the visual recognition of the object ‘church’ may
include such information as: is a large building, has stained-glass windows, has a
square or cross-like shape, made of brick or stone, etc. When I recognize an object
that meets enough of the church schema criteria, I identify the object as an instance
of the church category with speci� c values for the generic properties described by
the schema; a speci� c church has a certain size, a certain shape, and is made out of
a speci� c material. Schema are formed by induction from repeated experience with
the same type of object and may be based on the prototype example of a category
of objects. A schema is not an exact representation, but is more like a general pattern.
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2.3. Separation of diVerent types of geographic knowledge
There is also a body of evidence suggesting that we cognitively store what, where,

and when knowledge in separate categorical hierarchies, or knowledge structures,
that capture diŒering characteristics for diŒering purposes (Ungerleider and Mishkin
1982, Anderson 1987, Farah et al. 1988, Sergent 1991). For non-abstract objects,
knowing what an object is and being able to identify a speci� c type of object when
encountered involves detailed and precise geometric properties, particularly shape
and the relative orientation of component parts, in addition to other attributes such
as colour and size. On the other hand, knowing where something is seems to be
embedded in a knowledge of environmental scenes. This knowledge includes relative
locational properties of objects, but these properties, such as ‘containment’, ‘distance’,
and ‘direction’, tend to be very generalized. For example, farms tend to be located
outside of cities.

Kosslyn and Koenig (1992) note that determining temporal relationships is
qualitatively diŒerent from information relating to identity or location. There is thus
a third system of what they term a motion relations subsystem, corresponding to
what can be called the when knowledge representation system. For instance, as we
move through our environment, we experience landmarks and other elements in
speci� c temporal sequences, depending upon the direction we are travelling in space.
How quickly we encounter these sequences of elements also varies according to how
quickly or slowly we are moving. In the dynamics of urban change, when a speci� c
factory closed can be at least as important as where in explaining a subsequent urban
arrangement of land use.

Time relates to grouping information in two ways: � rst, properties of the patterns
of movement, per se, de� ne how moving objects will be grouped. For example, if we
see a lot of houses being built in a particular area, we see them as a single unit (i.e.
a subdivision), not as individual houses. This is called the Gestalt Law of Common
Fate (Kosslyn and Koenig 1992). Second, a speci� c pattern of movement that tends
to happen repeatedly in sequence will also be viewed as a unit. This is how we can
recognize the beginnings of ‘urban sprawl’ within our own community, even though
the individual components in such a change in land use over time are complex.
Kosslyn et al. (1992) argued that, because of the fundamental diŒerence in how they
are used, the where, what and when systems are qualitatively distinct from each other,
and as such, they are encoded separately within the brain. Clearly, however, what
and where knowledge cannot be completely separate and independent (Kosslyn and
Koenig 1992, Landau and JackendoŒ1993) as it is the interaction between these
systems that allows us to function in the world.

The interdependency of the cognitive what and where representational systems
was described by Marr (1982) speci� cally with respect to vision. Marr was interested
in building a computer model of vision, and viewed vision as an information pro-
cessing task. He asserted that processing of visual information must begin with the
perceived image of the real world. Note that image is meant here in the machine
vision sense, i.e. a location-based array of colour values, and not in the sense of
‘mental imagery’. Directly observed phenomena must � rst be selected and abstracted
into key characteristics of the image (the ‘primal sketch’). These characteristics are
interpreted using pre-existing knowledge, such as that which is stored in a schema;
objects are eventually associated with locations and groups of locations in the image.
Objects, as concepts, are thus always higher-order information. This information can
then be placed (or con� rmed) within the what system and it also becomes knowledge
that can be used to interpret subsequent images.
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2.4. Summary
This section has highlighted the features of cognition that we believe are particu-

larly pertinent to geographic database representation. First, there is signi� cant evid-
ence that our knowledge of objects, our knowledge of scenes, and our knowledge of
motion and process comprise three separate cognitive subsystems within the mind.
Furthermore, there are signi� cant diŒerences in the way that spatial information
about each is encoded. The what system of knowledge operates by recognition,
comparing observed evidence with a gradually accumulating store of known objects.
The where system operates primarily by direct perception of scenes within the
environment, picking up invariants from the rich � ow of sensory information. The
when system operates through the detection of change over time in both stored
object and place knowledge, as well as sensory information.

In addition, categorization plays a key role in geographic cognition. Taxonomic
and partonomic hierarchies facilitate the recognition of objects from sensory percep-
tion of the environment by providing schema for generic types of objects. These
schema are used within a cycle of knowledge acquisition in which sensory observa-
tions (Marr’s image) are used to identify objects in the environment (higher order
conceptual entities) through abstraction, which may then be used to modify and
re� ne the original schema (� gure 1).

3. Cognition and geographic database representation
While the integration of semantics into database representation has been an

ongoing project since the advent of the relational data model (Codd 1970, Chen
1976, Hull and King 1987, Peckham and Maryanski 1988, Borgida 1991, Booch
1994), there have been a number of recent studies that focus speci� cally on the
integration of cognitive principles into geographic database representation. For
example, Usery (1993) notes that category theory can provide a useful model for
development of a semantic ‘feature-based’ GIS. Of particular relevance to this paper
is the idea that database representation can be based on the decomposition of

Figure 1. The cycle of cognitive geographic knowledge acquisition and re� nement.
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geographic information into space, time, and theme properties (Sinton 1978, Nyerges
1991), analogous to the where, when, and what components of cognitive representa-
tion described in section §2.3. Of equal importance is the idea that since cognitive
representation (and acquisition) of geographic knowledge is divided between sensory
information (image) and derived knowledge (schema), so too can geographic database
representation be divided between spatiotemporal data and higher level geographic
knowledge derived from that data (Rennison and Strausfeld 1995, Freksa and
Barkowsky 1996).

Building on these themes, Peuquet (1994) describes the Triad framework for
geographic representation which decomposes geographic entities into interrelated
location-based (where), time-based (when), and object-based (what) information. This
approach seeks to capture diŒerent perspectives on a given geographic phenomenon,
but does not distinguish between observational data and derived knowledge.
Consequently, the Triad framework cannot represent categorization and other
important features of cognitive geographic representation and knowledge acquisition
as described in � gure 1. Raper and Livingstone (1995) take a somewhat similar
approach to develop a spatiotemporal geomorphologic database model. Their data
model represents a geomorphic phenomenon as a semantic decomposition into
attributes derived from the basic-level categories form, process, and material. These
attributes are referenced to a four-dimensional spatiotemporal framework with axes
of location (in three dimensions) and time.

Other researchers have sought to improve geographic database representation
using object oriented data modelling. The object oriented abstraction techniques
generalization and aggregation are analogous (but clearly not identical ) to taxonomic
and partonomic cognitive categorization hierarchies, respectively. In geographic
database research, these techniques have primarily been applied to the representation
of complex geometry of geographic phenomena (e.g. Egenhofer and Frank 1989,
Milne et al. 1993, Worboys 1994, Tang et al. 1996). For a more detailed review of
object-oriented conceptual modelling the reader is referred to Rumbaugh et al. (1991 )
and Booch (1994).

4. Description of the pyramid framework
4.1. Overview

The pyramid framework is founded on the principles and techniques described
in the above mentioned body of research, including object oriented modelling and
other approaches, in order to develop a rigorous, yet comprehensive, framework for
geographic database representation. The conceptual framework proposed here is
intended to be non-domain speci� c (i.e. inclusive of a variety of geographic phen-
omena) and is based on reducing knowledge about a geographic phenomenon into
perspectives based on the cognitive separation of what, when, and where knowledge.
The pyramid framework incorporates key cognitive structures including categoriz-
ation, part-whole relations, and behavioural rules, in order to create a high-level
semantic representation of an interrelated web, or system, of geographic phenomena.
We also employ theories of geographic knowledge acquisition, from sensory percep-
tion to cognitive conceptualization, in order to separate the representation of geo-
graphic data from the representation of geographic knowledge that is derived from
that data.

Thus far we have used terms such as data, information, and knowledge relatively
loosely, but it is helpful at this point to de� ne them more formally. Data are
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observational measurements that have been recorded in some way, whereas informa-
tion is data that is generalized, ordered and contextualized in ways that give them
meaning. Information thus is selective toward data, separating the important from
the relatively unimportant. Knowledge is a cumulative understanding of information,
i.e. an overall representative structure and a set of generalized rules of the relevant
phenomenon. Here, we use the term knowledge for all levels of derived description,
including information, in order to distinguish it from observational data.

Based on the semantic diŒerence between data and knowledge, the pyramid
framework is composed of two distinct, yet interrelated, components: the Data
component and the Knowledge component (� gure 2). The Data component repres-
ents uninterpreted observational data, analogous to the sensory image as described
by Marr (1982). These observational data are represented by three distinct data
‘perspectives’: location, time, and theme.

The Knowledge component represents derived knowledge that is analogous to
the recognition of objects embedded within the visual image (i.e. the observational
data) and the classi� cation of those objects into categories. It is in the Knowledge
component that the three perspectives of observational data come together to form
a semantic object (conceptual entity) that is of interest to the user, hence the graphic
pyramid structure and the name of the framework. Here, we identify two types of
classi� cation that mirror the principles of cognitive categorization: taxonomy (super-
ordinate-subordinat e relationships) and partonomy (part-whole relations). However,
cognitive research demonstrates that this process of knowledge derivation from
observational data is not unidirectional; prior knowledge is also often used to
interpret the observational data. Therefore, the Knowledge component also repres-
ents a rule-base for identifying objects and their categorical membership from the
observational data, a function that is analogous to the schema as described by
Thorndyke (1984).

As such, the Data and Knowledge components represent levels of abstraction
and a ‘cycle’ of knowledge development analogous to how humans use sensory

Figure 2. Overview of the pyramid framework: data component and knowledge component.
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perception to learn about the world, as is illustrated in � gure 1. Observational data
about the world is stored in the Data component, then classi� ed and interpreted to
derive meaningful information that is stored in the Knowledge component. This
knowledge may then be used to further interpret the observational data. The pyramid
framework can therefore be thought of as a knowledge development process in
addition to a static representational structure.

4.2. T he data component
Observed geographic data are formally represented within the Data component

by the location, time, and theme perspectives. The location and time perspectives can
be conceptualized using a geometric ‘container’ metaphor, in which space and time
can be thought of as an absolute and enclosed ‘space’ within which geographic
phenomena exist and processes and events take place. This is relatively intuitive—
real world geographic entities extend across space and over time. The general notion
of the Data component can be understood by using the familiar 3-D ‘space-time
cube’ (� gure 3) with location extending across the x and y axes and time extending
along the t axis. This cube de� nes a set of spatiotemporal subspaces, or voxels, each
with an assigned location and time.

A theme is de� ned here as a property that can be sensed, measured, and assigned
a qualitative or quantitative value. A theme behaves as a spatiotemporal � eld of
measurement—it is measurable throughout all space and time in the model universe,
even if the measurement values are null or zero at some locations and times.
Temperature is a good example of a theme, as it used here, because its measurement
yields a numeric value for any point on the earth’s surface.

Although less intuitive than location and time, a ‘theme space’ can be
conceptualized in a way similar to the space-time cube, such as in a multidimensional
statistical space or in a feature space, as is commonly referred to in the remote
sensing literature, where each sensed band of electromagnetic energy is de� ned as
one dimension in the feature space (Landgrebe, 1998). The integration of the theme
space with the space-time cube creates a multidimensional hypercube, such as in the
spatiotemporal observational data framework described by Raper and Livingstone

Figure 3. The space-time cube with two axes that describe location (x and y) and one axis
that describes a time line (t). Voxel I de� nes the intersection of a particular location
and time: {x, y, t} 5 {1, 1, 3}.
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(1995). This multidimensional space with all themes included is termed the data
space. Each multidimensional ‘voxel’ within the data space is de� ned by the intersec-
tion of its location, time, and multiple theme values.

4.3. T he knowledge component
Whereas the Data component of the pyramid framework concerns ‘raw’ observa-

tional data with stored values for locations, times, and themes, the Knowledge
component concerns the representation of derived geographical objects, their classi-
� cation, and their inter-relationships. In this sense, the Knowledge component is
representative of the conceptual entities that are recognized through the cognitive
process of abstraction of sensory input as well as the cognitive categorical knowledge
used in the abstraction process. The term object is used here to refer to a geographic
conceptual entity that has a unique and cohesive identity, and is related to a speci� c
combination of observational data stored in the location, time, and theme perspect-
ives. An object here is analogous to an instance in object oriented modelling. We
use the term class to refer to a type of object or a category of object, identical to
the usage of the term class in object oriented modelling. In the pyramid framework,
as in object oriented modelling, every object is an instance of, or a member of, a
particular class.

For a speci� c object, the location and time perspectives of the Data component
describe where, and at what times, the object was interpreted as existing within the
data space throughout its lifetime. The theme perspective describes the range of
thematic measurements that ‘constitute’ the object, or, in a sense, the composition
of the object. The location, time, and theme ‘history’ of the object can therefore be
retrieved by accessing the data space voxels to which it is referenced. However,
only certain spatiotemporal properties of an object may be derived directly from
the object’s reference to the data space. An object may also have many semantic
properties that are independent of its data space instantiation.

In order to represent semantic properties associated with an object, and to link
the object with its observed properties stored within the data space, an object is
represented within the pyramid framework through the use of an object template. To
allow maximum � exibility in the types of information that can be recorded, as well
as for the sake of uniformity throughout the Knowledge component, we use a frame
type of structure. Originally proposed by Minsky (1975), a frame is a conceptual
structure for representing a situation, a speci� c instance of an object, or for de� ning
an object class. The unique aspect of a frame structure is that it can contain diŒerent
kinds of information beyond simple attribute values and explicit relationships with
other objects, including default characteristics, important exceptions, and behavioural
rules. Frames can also contain procedures to retrieve attribute values on the � y or
that may act as demons to simulate sensors or monitors that act on newly acquired
observational data.

Figure 4 shows an example of a ‘blank’ object template where the attributes are
de� ned as follows:

E Object ID—a unique identi� er for the object
E Birth—when the object comes into existence
E Death—when the object ends existence
E Lifespan—duration of the object’s existence
E Minimum size—smallest size of the object during its lifespan
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Figure 4. A ‘blank’ object template used to formally represent an object in the pyramid
framework.

E Maximum size—largest size of the object during its lifespan
E Locational range—bounding polygon where the object exists during its lifespan
E Minimum theme value—smallest theme value of the object during its lifespan
E Maximum theme value—largest theme value of the object during its lifespan

As can be seen, the template for an object stores only those values that are
critical in the history of the object, as well as those attributes and attribute values
that describe an object as a whole. The function of the object template is not to
exhaustively describe the object. Rather, the object template serves two interrelated
functions: � rst, to provide a guide for � nding the location, time, and theme history
of the object within the Data component, when desired, and, second, to represent
enough information to de� ne the object’s unique identity, including its relationships
with other objects and its behavioural characteristics. These relationships and how
they function are de� ned below in relation to the storage of classes.

Classes are represented using a class template. This is a frame structure similar
to an object template, but the attributes of a class record ranges of values that de� ne
the criteria for membership in the given class rather than values that record the
observed character of an object. In this way, class templates play a role analogous
to that of schema in the cognitive process of object recognition. The ranges of
attribute values described in the class template serve as a rule-base for the interpreta-
tion of the data stored in the Data component. These are used in discovering speci� c
instances of that class, i.e. objects. For example, while an object has the attribute
‘lifespan’, a class has the attributes ‘maximum lifespan’ and ‘minimum lifespan’. All
objects that are members of that class are noted to have an actual lifespan within
that maximum and minimum range to be a class member. Additional information
may be included to note whether the stored attribute value ranges are required or
simply expected for members of that particular class.

In addition to the location, time and theme information that describes the
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attributes of a class, the class template contains slots for attributes that are not
directly related to the Data component but concern the semantics of the object
category. This includes information that describes the behaviour of an entire class.
These include the behaviour becomes—what other type of object objects of this class
can change into, thereby undergoing a change of identity. An example of this would
be that the class ‘tropical storm’ becomes ‘hurricane’. Of course, not all tropical
storms become hurricanes, but this establishes a potential behavioural path for that
class. The co-occurrences relation de� nes what other types of objects are typically
spatially and/or temporally coincident with objects in this class.

The class template also includes information on the interrelationships of the
various classes that mimics cognitive categorization structures; each class may have
taxonomic is-a-kind-of and has-kinds relationships. This allows each class to be
categorized into a higher-level superclass, which in-turn may be categorized into
another higher-level class, and so on, forming a generalization, or taxonomic, hier-
archy. In addition to generalization relationships, classes can have aggregation
relationships. Some real-world geographic entities are part of other, larger and/or
longer-lasting, geographic entities. To capture this, classes can have partonomic is-
a-part-of and has-parts relationships with other classes. This relationship property
indicates that the objects that are members of that class can have aggregation
relationships with objects in other classes.

Generalization and aggregation relationships, and behavioural properties, exist
not only for classes but also for speci� c objects and they are therefore represented
in the object template (� gure 4). In the object template, the is-a-part-of and has-parts
relationships indicate composition between speci� c objects (as opposed to the general
and potential aggregation relationship indicated for classes). An object also has an
is-a-kind-of relationship with the class of which it is a member (by de� nition an
object cannot have a has-kinds relationship with any other object). The behavioural
attributes listed in the object template, such as becomes, evolves-from, and co-
occurrences, also refer to other speci� c objects.

Note that some objects can be de� ned entirely from other objects and not de� ned
directly from the data space. Objects that are derived directly from their observation
in the data space are termed atomic; those objects that are composed solely of other
objects are termed composite. Note that the terms ‘atomic’ and ‘composite’ are not
used in the conventional sense to refer to primitive and complex data types, such as
integers and arrays, respectively. Rather, the terms refer to an object as the term
‘object’ is used here—a conceptual entity derived from the interpretation of observa-
tional data. Like the generalization hierarchy, the aggregation relationship can be
extended from the simple atomic-composite object relationship to a hierarchy of
composite objects. Many composite objects may have part-of relationships with
another composite object, forming an aggregation hierarchy, or partonomy.

So far we have described two separate and parallel hierarchies built upon general-
ization and aggregation. These two hierarchies are interrelated—each class in the
generalization hierarchy may have one or more superclasses and/or subclasses, and
also may have a set of objects (instances). Each object, whether atomic or composite,
is a member of one or more particular classes in the generalization hierarchy. Class
behaviour and relationship attributes are passed down to subclasses and member
objects through inheritance. This approach ensures that information that is common
to an entire class does not have to be redundantly stored in each object template
for every member object.
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5. Discussion of the pyramid framework

In the pyramid framework, we have described two interrelated components: � rst,
the Data component that encompasses observed location, time, and theme data and,

second, the Knowledge component. The Data component provides the observational

data with which objects are ‘constructed’ and is always maintained in its original,

uninterpreted state. The Knowledge component stores categorical criteria that allows

for the recognition of conceptual objects from the Data component as well as

properties of the actual objects themselves. This model represents real-world geo-
graphic entities in a manner that is better informed by human cognition than current

conventional geographic data modelling approaches. This is also analogous to how

humans modify knowledge based upon comparison of new observational information

to recollection of previous observations.

It is up to the domain expert to determine the classi� cation criteria in the

Knowledge component by either a ‘top-down’ or ‘bottom-up’ approach, or a com-

bination of both. In the top-down approach, the domain expert creates classes with
predetermined membership criteria before de� ning the member objects within each

class. In this classi� cation approach, a priori expert knowledge of the modelled

domain is used to create prede� ned object classes.

The bottom-up approach is more exploratory and is appropriate when the nature

of the actual objects that populate the modelled universe is unknown. Here, some

statistical clustering technique or inductive classi� cation method can be used in

order to develop classes and objects from the data space. Instead of integrating
expert knowledge into the pyramid framework, this approach seeks to facilitate

knowledge discovery by minimizing a priori assumptions about the nature of the

data and the conceptual entities they describe and maximizing the ‘objective’

recognition of patterns embedded in the data.

The templates as given in this discussion are not meant to be exhaustive, but

rather illustrative and to provide a general basis for geographic knowledge repres-

entation within a digital database. There are many classes where the storage of

additional information would be advantageous , or even essential. For example, if the
recurrence interval of a type of object is particularly important in its recognition, as

is the case in classifying � ood events, than an attribute describing that recurrence

may be included to de� ne that class.

These domain-speci� ed location-, time-, or theme-speci� c object attributes can

be accessed in the pyramid framework using a query process that evaluates the

dimensional dominance of the desired set of attributes. The dimensional dominance

is de� ned as the most constrained dimension (location, time, or theme) of the query
(Langran 1993, Peuquet and Qian 1996). For example, if one inquires where an

object is located at a speci� c time, then time is the dominant dimension of the query.

Whereas if one inquires where an object has a speci� c theme value, then theme is

the dominant dimension.

Slightly more complex dimensionally constrained queries can reveal other

location-, time-, and theme-dependent information such as:

E the size of an object at a speci� c time
E the duration that an object exists (or remains) at a speci� c location
E the rate of movement of an object over a particular duration



J. L . Mennis et al.514

E how often an object recurs at a particular location
E the range in theme values of an object over a particular duration

While some of these attributes may be stored in the object template for the
purpose of object recognition, it would be ine� cient to explicitly store the result of
every dimensionally constrained query. Humans do not store everything that they
know about any given object class, but rather store the general rules that allow the
required speci� c information to be retrieved and organized appropriately when
needed. They also distill-out the appropriate components of a larger knowledge
structure and reorganize it to suit the particular situation at-hand (Portugali 1996).
This makes sense from a database storage e� ciency perspective, as well.

The Knowledge component of the pyramid framework is similarly intended as a
� exible structure that can be manipulated in order to accommodate changing views
of the modelled domain. The creation of the Knowledge component can be described
as an iterative procedure: the generalization and aggregation hierarchies may be
constructed, analysed, subsequently revised, re-analysed, and so on, as well as abstrac-
ted for speci� c purposes. This iterative approach supports data exploration and
knowledge development because it allows the modeller to create a variety of structural
representations from the same underlying observational data stored in the Data
component.

6. An example: the representation of a storm system
We represent a particular type of storm system, the mesoscale convective complex

(MCC) in order to demonstrate the representational power of the pyramid frame-
work. MCCs are regional scale storm systems (as opposed to larger, synoptic scale
phenomena) that are composed of many individual storm cells that can act in concert
to create particularly violent storms (Maddox et al. 1986). These typically ‘egg’
shaped storms often occur at night in the Midwestern US during the summer or
early fall. They can produce copious amounts of rain and are often associated with
� ooding and other climate hazards. The representation of MCCs and their derivation
from observational data are particularly appropriate for this conceptual modelling
task because their identi� cation is based on a set of speci� c parameters derived from
analysis of remote sensing data, analogous to the extraction of objects from a data
space described here.

The � rst step in developing the conceptual representation of an MCC is to de� ne
the Data component. For this purpose, consider a data space with four dimensions.
The two location dimensions de� ne the Midwestern region of the US, regularly
partitioned into locational cells 1000 m on a side. The time dimension de� nes the
year-long period beginning 1 January, 1998 and ending 31 December, 1998, regularly
partitioned into hour long intervals. For simplicity, we de� ne only one theme, cloud
top temperature. Cloud top temperature is derived from thermal infrared (TIR)
satellite imagery and indicates the altitude of the cloud top (the higher the altitude,
the lower the temperature) , which in turn can indicate the stage of development or
severity of a storm (Carleton 1991).

Development of the Knowledge component in this particular case is a top-
down procedure, as opposed to bottom-up, because we are de� ning MCCs using
pre-de� ned expert knowledge. As such, we begin by de� ning the MCC class template
and its attributes which then later act as criteria for identifying actual MCC objects
within the data space. The MCC class is described by its class template (� gure 5)
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Figure 5. The MCC class template that describes the attributes of the MCC class, including
the criteria for class membership, relationships with other classes, and typical
co-occurrences.

which shows the MCC class attributes and their respective values. The criteria listed
here are adapted from Carleton (1991).

E a cloud top temperature that is less than Õ 52 ß C
E a contiguous area of between 50 000 and 350 000 square kilometres
E a duration longer than six hours
E a shape eccentricity (minor/major axis of the storm area) greater than or equal

to 0.7

Note that while the minimum and maximum shape eccentricity attributes may
not necessarily be included in every class template (as the attributes minimum and
maximum lifespan are), they are included here because eccentricity is essential for
the identi� cation of MCC objects. The class template also records the generalization
and aggregation relationships of the MCC class: an MCC is-a-kind-of larger category
of storm, mesoscale convective system (MCS) (Chappell 1986), and may be part-of
an object that represents a speci� c type of synoptic setting associated with a large-
scale front (Maddox 1983). In addition, the class template lists other attributes of
MCCs: they can evolve from squall line storms (Maddox et al. 1986), they typically
occur at night, and they are often associated with a low level jet stream (Carleton
1991 ).

The criteria captured within the MCC class template acts as a rule-base for a
query on the data space to identify individual MCC objects. The query procedure
to identify MCC objects steps through each of the class attributes described in
� gure 5 to select the portion of the data space that satis� es the class membership
criteria. The following query procedure (described simply in plain English, as opposed
to a formal query language) serves as an example of how MCC objects may be
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identi� ed from the data space. Note that each operation described below is applied
only to the objects that were selected in the previous selection operation.

E Theme value criteria:
Select only those voxels with a cloud top temperature < Õ 52 ß C

E Size criteria:
Group all contiguous selected voxels into individual (temporary) potential
MCC objects
Calculate the area of each potential MCC object
Select only those potential MCC objects with an area between 50 000 and
350 000 square kilometres

E Shape criteria:
Calculate the major and minor axes for each potential MCC object
Calculate the eccentricity (minor/major axis) of each potential MCC object
Select only those potential MCC objects with an eccentricity > 5 0.7

Querying based on the duration criteria can be complex. In order to calculate
the duration of each potential MCC object, it is necessary to maintain the identity
of each potential MCC object over time. If an object is stationary, location can be
used to identify the same object over time; however, MCCs are not stationary but
often move. For the purpose of this example, it is possible to maintain the identity
of each potential MCC object through time by simply stating that if the centroid of
a potential MCC object is located within 200 km of the centroid of another potential
MCC object at an adjacent time interval (i.e. either the prior or following time
interval), it is recognized as the same potential MCC object that has moved over
time. This method assumes that MCCs do not move (planimetrically) at a rate that
is greater than 200 km per hour and that two or more MCCs do not occur within
200 km of each other within the span of two consecutive time intervals (two hours).
Research on MCC storm movement suggests that this is typically the case (Maddox
et al. 1986). Using this approach to maintaining identity over time, the duration
criteria may be satis� ed by selecting all potential MCC objects that exist (maintain
their identity) over a duration of greater than six hours.

Each of the potential MCC objects that meet all the criteria listed above (theme,
size, shape, and duration) are then de� ned (instantiated) as actual MCC objects. All
MCCs that occurred over the United States during 1998 are represented as individual
MCC objects with associated location, time, and theme data captured as a portion
of the data space. Each MCC object also has an object template that captures the
important attributes of that particular MCC: its minimum and maximum cloud top
temperature, its minimum and maximum size, its duration, etc. As an example,
� gure 6 shows the object template for a particular MCC object that occurred the
early morning of 23 August, 1998. Other attributes included in the object template
are the MCC object’s is-a-kind-of relationship with the MCC class and its is-a-part-
of relationship with a particular large-scale front object, as well as its relevant co-
occurrences, such as the fact that it occurred during the night. Note the diŒerence
between the class template (� gure 5) and this object template (� gure 6). The two
templates are similar, however the class template stores attribute values that are
common to the entire class (including ranges of values for certain attributes) while
the object template stores attribute values that describe an actual geographic entity.

This example is relatively simple and straightforward. MCCs are modelled here
as atomic objects, using only one theme, and with only one higher level of generaliza-
tion and aggregation. One can imagine, however, that these same principles can be
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Figure 6. The object template for a particular MCC that occurred during the early morning
of 23 August, 1998 (numbers in brackets indicate the identi� cation of a particular
object).

used to develop a much more complex storm system representation if other data,
such as precipitation rate and air pressure, and a richer hierarchy of storm types,
such as single-cell storms and squall lines, were integrated into the representation.
Further, note that the structure of the Knowledge Component is relatively � exible.
This representation of MCCs in the Midwestern US during 1998 may be re� ned
from both additional observational data and from declarative knowledge generated
by domain experts. By altering the attributes (criteria) of the MCC class, new
sets of MCC objects can be generated, providing a variety of diŒerent structural
interpretations of the climate data for diŒerent application contexts.

7. Conclusion
Advances in geographic database representation are dependent upon a conceptual

level approach that incorporates models of human cognition of geographic phen-
omena. In addition, the conventional view of database modelling as the development
of a static structure that exists for the lifetime of the database inherently limits
exploration by providing only one view of the data. As a representational device,
the pyramid framework brings geographic database representation more in line with
human geographic cognition and also allows for the development of � exible and
modi� able geographic databases that can facilitate knowledge acquisition (i.e.
learning ).

The pyramid framework as described in this paper is conceptual in nature. It is
intended as a framework that can be used for departing from traditional GIS
representation techniques that have their roots in cartography, toward an approach
to representation that has the capability of utilizing the full potential of computers
as a representational medium, with much closer links to how humans represent and
learn about geographic space. This represents a dramatic departure from the long-
standard assumption that representation of geographic phenomena begins with
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points, lines, polygons and pixels. Granted, the framework proposed here is more
complex than previous approaches, but this is necessary in order to better re� ect
the complexity of human spatial cognition and learning and to thereby have a much
more powerful and � exible approach for digital database representation.

The pyramid framework is not intended to be comprehensive in its treatment of
cognitive geographic representation. Besides the futility in trying to imitate rather
than selectively using aspects that are particularly advantageous , there is � exibility
for adding aspects that may be particularly useful or appropriate within a particular
application context. There is also opportunity to integrate more advanced knowledge
representation schemes once they are developed. For example, there is ample evidence
that cognitive categorization diŒers signi� cantly from the set-based model of categor-
ies implicit in the object-oriented techniques used to represent categorical knowledge
in the pyramid framework as presented (Rosch 1978, LakoŒ1987). Perhaps this
particular issue may be addressed in future versions of the framework by drawing
on recent research on the representation of ‘fuzzy’ geographic entities (Burrough and
Frank, 1996).

There are other theoretical issues that warrant additional research concerning
the interaction between the Data and Knowledge components of the framework.
For instance, it is not speci� ed in the framework exactly how objects and classes in
the Knowledge component may be generated from observational data in the Data
component. Further eŒorts in this area need to address a variety of issues that
include the application of inductive and deductive logics, the use of statistical and
rule-based knowledge discovery techniques, and the role of graphic representation
at the human-machine interface.
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