
Intelligent Dasymetric Mapping  
and Its Application to Areal Interpolation

Jeremy Mennis and Torrin Hultgren

ABSTRACT: This research presents a new “intelligent” dasymetric mapping technique (IDM), which 
combines an analyst’s domain knowledge with a data-driven methodology to specify the functional 
relationship of the ancillary classes with the underlying statistical surface being mapped.  The data-
driven component of IDM employs a flexible empirical sampling approach to acquire information on 
the data densities of individual ancillary classes, and it uses the ratio of class densities to redistribute 
population to sub-source zone areas. A summary statistics table characterizing the resulting dasymetric 
map can be used to compare the quality of the output of different IDM parameterizations. A case 
study of four population variables is used to demonstrate IDM and provide a visual and quantitative 
error assessment comparing various IDM parameterizations with areal weighting and conventional 

“binary” dasymetric mapping. Intelligent dasymetric mapping outperforms areal weighting, and 
certain IDM parameterizations outperform binary dasymetric mapping.  
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Introduction

There has been much recent research on 
areal interpolation of population data. 
Much of this interest has been driven by 

demand for small-area population estimates for 
regions in which only relatively coarse resolution 
population data can readily be obtained. Such 
data sets are useful in a wide range of applica-
tions, such as emergency planning and manage-
ment (Dobson et al. 2000), public health (Hay 
et al. 2005), and monitoring global population 
(Sutton et al. 2001). The increasing volume and 
availability of remotely sensed imagery, which 
has been shown to indicate population distribu-
tion (Liu 2003; Holt et al. 2004; Wu et al. 2005), 
has driven much of the recent research in areal 
interpolation of population.

A prominent method in areal interpolation is 
dasymetric mapping, defined here generally as 
the use of an ancillary data set to disaggregate 
coarse resolution population data to a finer reso-
lution (Eicher and Brewer 2001). Recent research 
suggests that dasymetric mapping can provide 
more accurate small-area population estimates than 
many areal interpolation techniques that do not 
use ancillary data (Mrozinski and Cromley 1999; 
Gregory, 2002). However, this research has not 

identified an optimal methodology for specifying 
the functional relationship of the ancillary data 
with population density. In traditional dasymetric 
mapping approaches, this relationship has been 
specified subjectively by the analyst (Wright 1936; 
Eicher and Brewer 2001). More recently, statisti-
cal methods have been used to characterize this 
relationship (Goodchild et al. 1993; Langford et 
al. 1991).  

In previous research, we described the develop-
ment of an algorithm for dasymetric mapping that 
relies on sampling the source population data 
to quantify the population density of individual 
ancillary data classes (Mennis 2003; Mennis and 
Hultgren 2005). Here, we extend this previous 
research to present a new “intelligent” dasymetric 
mapping (IDM) technique that supports a variety 
of methods for characterizing the relationship 
between the ancillary data and underlying statis-
tical surface. We refer to the technique as intel-
ligent because an analyst may: 1) establish this 
relationship subjectively using their own domain 
knowledge; 2) extract this relationship from the 
data using a novel empirical sampling technique; 
or 3) combine the subjective and empirically based 
methods. The IDM method is implemented as a 
geographic information system (GIS) extension that 
facilitates the parameterization of the technique 
and returns a set of statistics that summarize the 
quality of the resulting dasymetric map. As a case 
study, IDM is used to redistribute U.S. Census tract-
level data for four population variables for the 
Denver, Colorado, region to sub-tract units using 
ancillary land cover data. U.S. Census block-level 
data for the same region are used to analyze the 
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accuracy of the derived dasymetric map. Different 
parameterizations of IDM are compared with other, 
conventional areal interpolation methods.  

Previous Research in Dasymetric 
Mapping and Areal Interpolation
To our knowledge, the earliest reference to 
dasymetric mapping is the 1922 population 
map of European Russia by Russian cartogra-
pher Semenov Tian-Shansky (for discussion, see 
Fabrikant’s (2003) and Bielecka’s (2005) read-
ings of the work of Preobrazenski (1954) and 
(1956), respectively). J.K. Wright (1936) popu-
larized dasymetric mapping in the U.S. and is 
often incorrectly cited as its inventor, though he 
noted the Russian origin of the term “dasymet-
ric” (Wright 1936, p. 104). Modern cartography 
textbooks define a dasymetric map as one that 
displays statistical surface data by exhaustively 
partitioning space into zones that reflect the 
underlying statistical surface variation (e.g., Dent 
1999; Slocum et al. 2003). Ideally, the zones in 
a dasymetric map should be as near to homo-
geneous in character as possible, having near 
constant values within, and having boundaries 
coincident with, the surface’s steepest escarp-
ments.  

Dasymetric mapping as a procedure is applied 
to data sets for which the underlying statistical 
surface is unknown, but for which aggregated data 
already exist, though the zones of aggregation are 
not derived from the variation in the underly-
ing statistical surface but are rather the result of 
some convenience of enumeration. The process of 
dasymetric mapping is thus the transformation 
of data from the arbitrary zones of data aggre-
gation to a dasymetric map in order to recover 
and depict the underlying statistical surface. In 
dasymetric mapping, the transformation of data 
from the arbitrary zones of the original source 
data to the meaningful zones of the dasymetric 
map incorporates the use of an ancillary data set 
that is separate from, but related to, the variation 
in the statistical surface (Eicher and Brewer 2001). 
Dasymetric mapping therefore has a close rela-
tionship to areal interpolation—the transforma-
tion of data from a set of source zones to a set of 
target zones with different geometry (Goodchild 
and Lam 1980).  

Recent research in dasymetric mapping has been 
subsumed in large measure under the topic of 
areal interpolation. Mrozinski and Cromley (1999) 
provide a helpful typology of areal interpolation 

within which dasymetric mapping may be placed. 
The typology delineates methods for combining 
choropleth and area-class maps; in the latter 
case, zone boundaries demark regions of rela-
tively homogeneous character (Mark and Csillig 
1989). Mrozinski and Cromley (1999) distinguish 
between the “alternate geography” problem, in 
which areal interpolation is used to transform 
data from the choropleth map source zones to 
the area-class map target zones, and the “polygon 
overlay” problem, in which the target zones are 
formed by the intersection of the choropleth and 
area-class maps.

The most basic method for areal interpolation is 
areal weighting, in which a homogeneous distribu-
tion of the data throughout each source zone is 
assumed. Each source zone therefore contributes to 
the target zone a portion of its data proportional 
to the percentage of its area that the target zone 
occupies. In the case of the alternate geography 
problem, if we denote a choropleth source zone 
s and an area-class map zone z, then the target 
zone t = z. The estimation of the count for the 
target zone is:

                                

                                      (1)

where:
tŷ    = the estimated count of the target zone; 

 ys     = the count of the source zone; 

zsA ∩  = the area of the intersection between 
             the source and target zone;  
 As    = the area of the source zone; and 
  n    = the number of source zones with 
             which z overlaps (Goodchild and Lam 
            1980). 
In the polygon overlay problem, where zst ∩=

, and each target zone intersects one and only 
one source zone, Equation (1) may be simplified 
to read: 

                                                               
                                                     (2)

where tA  is the area of the target zone.
Dasymetric mapping can be considered an 

approach to the polygon overlay areal interpo-
lation problem which seeks to improve on areal 
weighting by establishing a relationship between 
the underlying statistical surface and the differ-
ent classes contained within the area-class map.  
Dasymetric areal interpolation techniques can 
be distinguished from other areal interpola-
tion approaches that either do not make use of 
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ancillary data or do not incorporate information 
regarding the different ancillary classes, such as 
areal weighting, distance-weighted interpolation 
of areal data mapped to point locations (Martin 
1989), and smooth pycnophylactic interpolation 
(Tobler 1979).  

Perhaps the most common dasymetric mapping 
method is the traditional binary method, in which 
ancillary data classes are regarded as either populated 
or unpopulated (Eicher and Brewer 2001). Other 
traditional dasymetric methods include the class 
percent and limiting variable methods (Wright 1936; 
McCleary 1969; Eicher and Brewer 2001). These 
traditional methods have been adapted for use 
with remotely sensed imagery (Mennis 2003; Holt 
et al. 2004) and, more recently, for road network 
data (Hawley and Moellering 2005; Reibel and 
Bufalino 2005).  Other researchers have specified 
the relationship between the underlying statisti-
cal surface and the ancillary data classes using 
regression (Langford et. al. 1991; Goodchild et 
al. 1993; Yuan et al. 1997), the expectation/maxi-
mization (EM; Dempster et al. 1977) algorithm 
(Flowerdew et al. 1991; Bloom et al. 1996), and 
the use of maximum likelihood estimation in a 
spatial interaction model (Mrozinski and Cromley 
1999).

Research which has compared a variety of areal 
interpolation methods suggests that dasymetric and 
intelligent areal interpolation techniques can outper-
form areal weighting and other areal interpolation 
approaches that do not incorporate ancillary data 
(see Wu et al. (2005) for a recent review), though 
interpolation accuracy is dependent on both the 
strength of the relationship between the source 
and ancillary data as well as the geometry of the 
source, target, and ancillary data zones (Sadahiro 
1999). Fisher and Langford (1995) found that the 
traditional binary dasymetric method was more 
accurate than both areal weighting and a regres-
sion-based intelligent areal interpolation technique. 
Similar results were born out by Gregory (2002), 
who also demonstrated the combination of the 
binary method with the EM algorithm. Mrozinski 
and Cromley (1999) found dasymetric techniques 
to be more accurate than areal weighting and 
smooth pycnophylactic interpolation.

Intelligent Dasymetric Mapping 
Intelligent dasymetric mapping takes as input 
count data mapped to a set of source zones and 
a categorical ancillary data set, and redistributes 
the data to a set of target zones formed from the 

intersection of the source and ancillary zones. 
Data are redistributed based on a combination 
of areal weighting and the relative densities 
of ancillary classes (Mennis 2003). Consider a 
source zone s and an ancillary zone z where z 
is associated with ancillary class c. Target zone t 
is defined as an area of overlap of s and z. The 
estimated count for a given target zone is calcu-
lated as:
                                         
                                         
             	             

                                    (3)

where cD̂  is the estimated density of ancillary 
class c.

The value of cD̂  may be set by the analyst, if 
the analyst has a priori knowledge of the density 
value for that class.  Or, the analyst may choose 
to derive the data density for any ancillary class 
by sampling a subset of the total source zones 
that may be associated with that ancillary class.  
The analyst has three options for the sampling 
method employed. The ‘containment’ method 
selects those source zones that are wholly contained 
within an individual ancillary class. The ‘centroid’ 
method selects those source zones that have their 
centroids contained within an individual ancillary 
class. The ‘percent cover’ method allows the user 
to set a threshold percentage value and then selects 
those source zones whose area of occupation by 
a single ancillary class is equal to or exceeds that 
threshold.  Once a sample of source zones has been 
selected as representative of a particular ancillary 
class, cD̂ may be calculated as:

            

                                 (4)
 

where m is the number of sampled source zones 
associated with ancillary class c.  

Note that even when an analyst chooses to derive 
the density of most of the ancillary classes by sam-
pling there may be one or two ancillary classes to 
which the analyst knows that no data should be 
distributed. In the case where one or more ancil-
lary classes are assigned a data density of zero by 
the analyst, the term tA  in Equation (3) refers 
only to the areas of target zones associated with 
ancillary classes that are inhabited, i.e., for which 
a data density of zero has not been enforced by 
the analyst. Likewise, the term cD̂  in Equation 
(4) refers only to the densities of ancillary classes 
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that are inhabited. In addition, the term sA  in 
Equation (4) is replaced by the area of the source 
zone occupied by inhabited ancillary classes.  

To account for spatial variation in the relationship 
between data density and ancillary class, IDM can 
incorporate an additional data set of region zones, 
where the data density for each ancillary class is 
calculated separately for each individual region. 
There is also the possibility that a particular ancil-
lary class may go unsampled, which can occur using 
the containment or the percent cover sampling 
method. In this case, the unsampled class’s density 
is estimated using “refined” areal weighting. First, 
the count assigned to each target zone associated 
with an unsampled class is estimated based on the 
previously estimated densities of the other ancillary 
classes that occupy that target zone’s host source 
zone. For instance, consider a source zone that 
overlaps multiple ancillary zones. Some ancillary 
zones are associated with an ancillary class that 
has gone unsampled (denoted ancillary class u) 
and whose density estimate is therefore unknown.  
The other ancillary zones are associated with an 
ancillary class whose density estimate is known 
(denoted ancillary class k), because it was derived 
from sampling or a preset density value assigned 
by the analyst. The count of a target zone associ-
ated with u is calculated as:

                     

(5)

where:

)(ˆ uty  = the estimated count of the target zone 
             associated with u; 

kD̂    = the estimated density of k;  

)(ktA  = the area of the target zone associated 
              with k; and 

)(utA  = the area of the target zone associated  
              with u.  
Note that )(ˆ uty  is a temporary estimate, used 

only to estimate the density of the ancillary class 
whose density estimate is unknown; it is not the 
final estimated count for that target zone. Once 
the value of )(ˆ uty  is found, the estimated density 
of ancillary class u can be calculated using the 
formula:

                               
                           (6)

where:
 uD̂  = the estimated density of u; and 
   p   =  the number of target zones in  
            the  entire data set associated with u.  
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Implementation
The IDM method was programmed as a Visual 
Basic for Applications (VBA) script within 
the ArcGIS (Environmental Systems Research 
Institute, Inc.) GIS software package. The script 
prompts the user via a series of dialog boxes to 
load the source zone and ancillary data layers, 
set manual preset values for selected ancil-
lary classes, and select a sampling strategy. 
Alternatively, the user can specify the parameter-
ization of the technique using a header file. The 
various sampling strategies are implemented 
using the basic overlay operations offered by 
ArcGIS. One parameterization option in the spa-
tial selection operation in ArcGIS supports the 
ability to select only those polygons in one layer 
that fall completely within polygons in another 
layer. This option was used to support contain-
ment sampling, where the script loops through 
a series of selection functions that identify those 
source polygons that are wholly contained within 
polygons of each ancillary class. Another spatial 
selection parameterization option supports cen-
troid sampling, using the same looping struc-
ture in the script. Here, the script loops through 
a series of selection functions that identify those 
source polygons whose centroids fall within each 
ancillary class, essentially a point-in-polygon 
search (though the analytical geometry is han-
dled internally by the software).  

The percent cover method is a bit more com-
plicated as it requires both a polygon overlay 
operation and a tabular summary operation. An 
intersect operation between the source zone layer 
and the ancillary data layer yields a new “inter-
sect” polygon data layer, for which the area is 
calculated for each polygon. The script then loops 
through each source zone polygon, retrieves those 
intersect layer polygons that it contains, sums the 
area of the source zone polygon occupied by each 
ancillary class, and divides that area by the area 
of the entire source zone polygon to yield the 
percent of the source zone polygon covered by 
each ancillary class. Those source zone polygons 
that exceed the user-specified threshold for the 
percent cover method may be identified using a 
simple attribute selection operation.

When the IDM script finishes a run, it returns a 
dasymetric vector polygon layer with a data count 
and density estimates for the target zones. In addi-
tion, a summary table is returned that character-
izes the map layer output. This table includes 
information that is intended to assist the user in 
evaluating the relative quality of the resulting dasy-
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metric map; it is described more fully in the case 
study presented below. Source code for the IDM 
VBA script, as well as sample data for dasymetric 
mapping, may be downloaded from http://astro.
temple.edu/~jmennis/research/dasymetric. 

Case Study Data and Methods
The IDM method is demonstrated by dasymetric 
mapping variables derived from the 2000 U.S. 
Census at the tract-level to sub-tract units. We 
use U.S. Census data because they are available 
at nested spatial resolutions; thus we enter tract-
level data into IDM and then use higher resolu-
tion Census data to validate the IDM results. We 
emphasize that IDM is not restricted to use with 
U.S. Census data, or even population data, but it 
can be applied to the estimation of any spatially 
aggregated count data. 

The study region encompasses 373 tracts in the 
Front Range of Colorado, including parts of Denver, 
Jefferson, Boulder, and Adams counties. The Front 
Range provides an excellent case study region 
because it encompasses densely populated urban 
centers as well as sparsely populated rural residential 
and agricultural areas. To test the performance of 
the dasymetric mapping method using data with 
different spatial distributions, the method was 
applied to four different Census variables (Figure 
1): total population, Hispanic population, number 
of children (people under the age of 21), and 
number of households. Though total population 
density is significantly and positively correlated 
with all three of the remaining variables (p<0.01), 
the variables are substantially different enough in 
their spatial variation (as shown by Figure 1) to 
introduce some variability into the analysis. For 
example, Hispanic population density is far more 
concentrated in smaller areas of the region as 
compared to the total population density, and it 
has a relatively low correlation with household 
density (Pearson r = 0.37). 

The ancillary data used for the case study is 
a vector polygon land-cover data set generated 
from manual interpretation of 1996-1997 aerial 
photography as part of the U.S. Geological 
Survey’s Front Range Infrastructure Resources 
Project (Stier 1999). These data were originally 
attributed using a modified hierarchical Anderson 
land-cover scheme (Anderson et al. 1976). To aid 
in the dasymetric mapping, we selected the level 
of the hierarchy for each land-cover class which 
we thought was most closely related to the distri-
bution of population, typically level two or three. 
For the case study, each polygon was classified 

as one of the following land covers (Figure 2): 
high-density residential, low-density residential, 
non-residential developed, vegetated, or water. 
Note that the four case study variables, though 
they have different spatial distributions, are all 
related to land cover. Generally, people obviously 
tend to concentrate in residential lands, though the 
degree of concentration differs among measures 
of the total population, children, households, and 
Hispanics; these differences provide a variety of 
contexts within which to test IDM.

Using these population and land cover data, a 
series of maps were created using IDM, as well as 
using areal weighting and the traditional binary 
dasymetric mapping technique. The parameteriza-
tions of IDM were varied systematically for differ-
ent mapping runs. Each of the different sampling 
methods—containment, centroid, and percent 
cover—was used. For the percent cover sampling 
method, percent cover thresholds of 70, 80, and 
90 percent were employed. Each sampling method 
was also applied using no manually preset ancillary 
class data density values and manually preset values 
of zero data density for the non-residential devel-
oped and water land covers. In addition, a regions 
layer of the counties was also employed (Figure 
2).  Each sampling method was run twice—once 
with the use of the regions layer, once without. As 
noted above, when regions are incorporated into 
IDM, the densities of ancillary classes are estimated 
independently for each region. In all, the follow-
ing 19 areal interpolation maps were created for 
each of the four Census variables:

Conventional Approaches
1.	 Areal weighting [is capitalization necessary in 

words that do not begin the item?];
2.	 Binary (zero data distributed to non-residential 

developed and water land covers; areal weighting 
used to distribute the data to remaining land 
covers);

Intelligent Dasymetric Mapping (IDM)
3.	 Centroid sampling without regions and with 

presets;
4.	 Containment sampling without regions and 

with presets;
5.	 Percent cover (70 percent) sampling without 

regions and with presets;
6.	 Percent cover (80 percent) sampling without 

regions and with presets;
7.	 Percent cover (90 percent) sampling without 

regions and with presets;
8.	 Centroid sampling with regions and presets;
9.	 Percent cover (70 percent) sampling with 

regions and presets;



184                                                                                                        Cartography and Geographic Information Science

10.	Percent cover (80 percent) sampling with 
regions and presets;

11.	Percent cover (90 percent) sampling with 
regions and presets;

12.	Centroid sampling without regions and 
without presets;

13.	Percent cover (70 percent) sampling without 
regions and without presets;

14.	Percent cover (80 percent) sampling without 
regions and without presets;

15.	Percent cover (90 percent) sampling without 
regions and without presets;

16.	Centroid with regions and without presets;
17.	Percent cover (70 percent) with regions and 

without presets;

18.	Percent cover (80 percent) with regions and 
without presets;

19.	Percent cover (90 percent) with regions and 
without presets.

To support the error analysis and comparison 
of the different areal interpolation maps, the 
difference between the estimated and actual 
population data for each Census block was cal-
culated. As has been done in previous research 
(Eicher and Brewer 2001), we use maps of the 
count error (the difference between the actual 
and estimated variable counts) at the validation 
data level to visually explore the nature of the 
error. Our quantitative assessment of error is also 
similar to that used by previous researchers in 

Figure 1. Tract-level maps of the study area and the four variables used to test the dasymetric mapping methods: Total 
population (A), Hispanic population (B), children (C), and households (D).
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its use of the root mean square (RMS) error as a 
summary of the error within each original source 
zone (Fisher and Langford 1995; Gregory 2002; 
Mrozinski and Cromley 1999). The error within 
a given source zone is calculated as:  

where: 
 RMS

sE  =the RMS error of source zone s; 
 by       = the actual population of block b; 
 bŷ       = the estimated population of block b; 
                and  
  q  = the number of blocks contained within s. 

To account for the fact that the 
actual population varies greatly 
from tract to tract, the RMS error 
value for each source zone is nor-
malized by the actual population 
of the tract (Eicher and Brewer, 
2001; Gregory, 2002) to derive 
the source zone’s coefficient of 
variation (CV), calculated as:

  

These CV scores are entered 
into an analysis of variance 
(ANOVA) test to determine 
whether there is a significant dif-
ference in means among the CV 
values of the 19 different areal 
interpolation maps. Because the 
Levene statistic indicates that the 
assumption of homogeneity of 
variances among the different 
groups is rejected for all four vari-
ables, the Tamhanes T2 post-hoc 
test is used to indicate whether 
there is a significant difference 
in means between each pair-wise 
combination of the 19 maps.

Results

Dasymetric Map Output
Because the volume of results 
(including 19 areal interpola-
tion maps, error maps, and 
summary files) is too large to 
present here in full, we focus 
on just one representative IDM 
output as an example before 

turning to the quantitative analysis of all 19 maps. 
Figure 3 shows the map of total population pro-
duced using the centroid sampling method with 
regions and presets (#8).  Note that the map 
depicted in Figure 3 is only one visualization 
of the vector polygon data layer produced by 
the IDM run; a more detailed map could easily 
be generated by using a larger number of class 
intervals or by altering the interval boundaries. 
Clearly, the map presented in Figure 3 offers a 
far more detailed depiction of population den-
sity than the analogous choropleth map shown 
in Figure 1. This is particularly true in subur-
ban and exurban areas, where the tracts tend to 
be larger, and where the land cover tends to be 

Figure 2. Land cover map of the study area used as the ancillary data in the 
dasymetric mapping methods (detail of inset box area shown at bottom). County 
boundaries, clipped to the study area, and county names are also shown for 
reference.
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particularly heterogeneous at the transi-
tion from urban to rural land uses.  Figure 
4 shows a close-up view of such an area 
(delineated as the boxed area in Figure 3) 
comparing the choropleth map with the 
IDM-derived map.  

Table 1 shows an abridged version of the 
summary table that accompanies the map 
shown in Figure 3. The table provides a rough 
indicator of the quality of the dasymetric 
mapping by showing the number of sampled 
source zones, the data density mean and 
standard deviation of the sampled source 
zones, the data density mean and standard 
deviation of the target zones, and the ultimate 
method for target zone density estimation, 
whether by preset, sample, refined areal 
weighting (RAW), or, in the case where a 
class in a particular region goes unsampled, 
the mean from other regions.  

It is worth emphasizing that the summary 
table is not intended to provide an absolute 
nor comprehensive metric of map accuracy. 
It is perhaps most useful as a relative indica-
tor of quality to compare multiple 
IDM parameterizations. Ideally, 
there should be a sufficient number 
of samples for those classes whose 
density is derived by sampling, 
and the sample and target stan-
dard deviations should be relatively 
low. A low sample number increases 
the likelihood that the samples do 
not capture the data density of the 
ancillary class, and it makes the tech-
nique susceptible to outliers that 
can introduce error into the density 
estimation. A high sample or target 
standard deviation indicates that 
the data density varies highly within 
the ancillary class.  Since dasymet-
ric mapping assumes a stable and 
observable relationship between the 
ancillary classes and the statistical 
surface being estimated, high vari-
ability in the ancillary class–surface 
relationship decreases the quality 
of the dasymetric mapping.  

For example, compare Table 1 to 
Table 2, which reports an abridged 
version of the summary table for the 

Figure 3. The dasymetric map of total population density produced 
using the centroid sampling method with regions and presets of 
zero density for non-residential developed and water land covers. 
Note that the class interval and color schemes are the same as for 
Figure 1A. Inset box indicates the area of detail shown in Figure 4.

Region Sample 
Number

Sample 
Mean

Sample
SD

Estimated
Method

Target
Mean

Target 
SD

Denver
Hi Den Res 18 3,806 2,052 Sample 4,702 1,733
Lo Den Res 81 2,852 1.442 Sample 3,362 1,310
Non Res Dev Preset 0 0
Vegetated 6 761 755 Sample 646 279
Water Preset 0 0
Jefferson
Hi Den Res 8 1,916 631 Sample 2,770 1,057
Lo Den Res 49 1,749 627 Sample 1,758 936
Non Res Dev Preset 0 0
Vegetated 24 703 557 Sample 328 158
Water Preset 0 0
Adams
Hi Den Res 3 1,494 1,214 Sample 2,116 985
Lo Den Res 35 2,188 914 Sample 1,823 1,655
Non Res Dev Preset 0 0
Vegetated 21 816 566 Sample 481 271
Water Preset 0 0
Boulder
Hi Den Res 5 2,107 960 Sample 4,392 3,898
Lo Den Res 23 1,819 1,167 Sample 752 816
Non Res Dev Preset 0 0
Vegetated 21 377 440 Sample 294 229
Water Preset 0 0

Note: “Sample Number” is the number of sampled source zones. “Sample Mean” is the mean 
data density (in this case, population density) of the sampled source zones.  “Sample SD” is the 
standard deviation of the data density of the sampled source zones. “Estim. Method” is the method 
used to estimate the target density.  “Target Mean” is the mean data density of the target zones 
(the dasymetric map layer polygons).  And “Target SD” is the standard deviation of the data density 
of the target zones. “Hi Den Res” and “Lo Den Res” stand, respectively, for High and Low Density 
Resolution.

Table 1. Abridged version of the 
summary table associated with the 
dasymetric map shown in Figure 3.
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IDM run using percent cover sampling with an 80 
percent setting, regions, and presets (#10). Figure 
5 shows the dasymetric map associated with the 
IDM run reported in Table 2. Table 1 indicates that 
in all regions, 75 percent of the classes for which 
sampling was the chosen method of estimation 
were sampled more than ten times. In contrast, 
Table 2 shows that in every region, at least two 
of the three classes for which sampling was the 
chosen method of estimation were sampled three 
times or less. And every region had at least one 
class that went unsampled. In these latter cases, 
either the mean density for that class from the 
other regions was used, or refined areal weighting 
was employed. As a specific example, consider the 
vegetated class. The mean target zone density for 
this class is generally much lower in Table 2 than 
in Table 1. As IDM is volume preserving within the 
original source zones, Table 2 reports inflated mean 
target zone densities in the low-density residential 

and high-density residential classes as compared 
to Table 1. Because of the difference in sampling 
rate and method of density estimation, however, 
one would have greater confidence in the estimates 
shown in Table 1 than in those in Table 2.

Error Maps
Figure 6 shows a block-level count error map for 
the map shown in Figure 3, where count error 
is calculated as the actual population subtracted 
from the estimated population of the block. The 
mean count error is zero and the standard devi-
ation is 84. Clearly, a far greater area of blocks 
is subject to overestimation, as compared to 
underestimation, at greater than one standard 
deviation. This reflects the fact that relatively 
large rural blocks tend to be overestimated while 
relatively small urban blocks tend to be under-
estimated. Similar patterns have been found by 
other researchers in dasymetric mapping (Eicher 
and Brewer 2001; Harvey, 2002a). In the study 
region, these overestimated rural areas occur 
primarily on the western border, where the 
plains meet the foothills of the Rocky Mountains. 
These areas are typically large swaths of sparsely 
populated shrubland, encoded as part of the 
vegetated class on the land cover map (Figure 
2).

Figure 7 shows a close-up view of the boxed area 
in Figure 6, demonstrating the nature of the error. 

Figure 4. A visual comparison of the tract-level choropleth 
map of population density (top) with the dasymetric map 
of population density (bottom) for the inset box area 
shown in Figure 3.  Note that the class interval and color 
schemes are the same as for Figure 1A.

Figure 5. The dasymetric map of total population density 
produced using the percent cover sampling method with 
an 80% setting, regions, and presets of zero density for non-
residential developed and water land covers.  Note that the 
class interval and color schemes are the same as for Figure 
1A.
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Figure 7A shows population density mapped to the 
tract source zones and Figure 7B shows the land 
cover. This tract is occupied primarily by vegetated 
land, with smaller areas of water, low-density resi-
dential, and non-residential developed land. The 
IDM-derived map of population density (with all 
polygon boundaries shown) is displayed in Figure 
7C. Note that the population is now excluded from 
the water and non-residential developed land and 
concentrated in the low-density residential land. Figure 
7D shows the block-level count error. Apparently, the 
non-residential developed areas in this tract contain 
population; the population in these areas is severely 
underestimated because the data density for this class 
was manually preset as zero in the IDM run. The 
people who should have been apportioned to the 
non-residential developed land in the tract were 
instead assigned to the vegetated land, for which 
the population was overestimated. Even though the 
count error was relatively high for certain blocks, Figure 
7C shows that the IDM run correctly reapportioned 
population out of vegetated lands into high- and 
low-density residential land within the tract.  

Quantitative Error Analysis
Figure 8 provides a chart of the mean CV scores 
for each of the 19 areal interpolation methods, 
for each of the four variables. Generally, the 
lowest CV scores occurred for total population, 
while the highest scores occurred for Hispanic 
population. This is likely because, compared to 
the other variables, the total population variable 
has the highest total count and is more homo-
geneously distributed. Hispanic population, by 
contrast, is the most spatially concentrated of 
the variables (Figure 1) and occurs sparsely over 
large areas.   

For all variables, areal weighting (#1) has the 
highest CV value, indicating relatively poor per-
formance compared to the other methods. IDM 
centroid sampling with presets (#3) and IDM con-
tained sampling with presets (#4) consistently score 
among the lowest CV values for all variables. The 
CV scores for the remainder of the methods vary 
from variable to variable but are generally equal to, 
or lower than, the CV score for the binary method 
(#2) (with the exception of #12, #13, and #16 

Region
Sample 
Number

SampleMean
Sample

SD
Estim.

Method
Target
Mean

Target SD

Denver
Hi Den Res 1 4089 0 RAW 5891 1958
Lo Den Res 26 3026 1001 Sample 3210 1144
Non Res Dev Preset 0 0
Vegetated 0 Mean 43 13
Water Preset 0 0
Jefferson
Hi Den Res 0 RAW 2145 949
Lo Den Res 5 1985 564 Sample 2234 1159
Non Res Dev Preset 0 0
Vegetated 1 34 0 Mean 48 24
Water Preset 0 0
Adams
Hi Den Res 0 RAW 4344 1634
Lo Den Res 3 2954 618 Sample 2186 1502
Non Res Dev Preset 0 0
Vegetated 3 26 24 Sample 21 10
Water Preset 0 0
Boulder
Hi Den Res 0 RAW 2782 3764
Lo Den Res 0 Mean 1373 1511
Non Res Dev Preset 0 0
Vegetated 6 67 69 Sample 51 58
Water Preset 0 0

Note: “Sample Number” is the number of sampled source zones. “Sample Mean” is the mean data density (in this case, population density) 
of the sampled source zones.  “Sample SD” is the standard deviation of the data density of the sampled source zones. “Estim. Method” is the 
method used to estimate the target density.  “Target Mean” is the mean data density of the target zones (the dasymetric map layer polygons).  
And “Target SD” is the standard deviation of the data density of the target zones. “Hi Den Res” and “Lo Den Res” stand, respectively, for High and 
Low Density Resolution.

Table 2. Abridged version of the summary table associated with a dasymetric mapping of total population using percent 
cover sampling with an 80 percent setting, regions, and presets.
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in Figure 8C). While some methods appear to be 
stable in their accuracy relative to the other methods, 
some fluctuate from variable to variable. Method 
#9, for example, has a relatively low CV score for 
total population but relatively high CV score for 
Hispanic population. Those methods using presets 
(#3–#11) generally outperform those methods 
without presets (#12–#19), though this pattern 
is tempered by the variability introduced by the 
use of regions and the different threshold settings 
for the percent cover sampling method.

The ANOVA reveals that there are significant dif-
ferences in means among the 19 areal interpolation 
methods for each of the four population variables 
(Table 3). Table 4 reports the Tamhane’s post-hoc 
test of significant difference in the mean for each 
pair-wise combination of methods. Most of the 
IDM methods have a significantly different mean 

CV score than areal weighting for at least 
one variable, and for those methods using 
presets, for three or four variables. There 
is no significant difference in mean CV 
between areal weighting and the binary 
method, although the binary method has 
a lower CV score for all four variables. 
Most of the IDM methods using presets 
have a significantly different mean CV 
score than does the binary method for 
at least one variable.  

It is perhaps surprising that more sig-
nificant differences between methods were 
not identified.  This result is likely due 
to the high variability in CV scores for 
each method for each variable. In fact, 
though they are not shown here due to 
space considerations, the standard devia-
tion of most CV scores is approximately 
equal to the mean. This high variability, 
in combination with the high number 
of multiple comparisons and its effect 
on the bounds of significance, acts to 
provide a fairly conservative measure 
for identifying statistically significant 
differences in mean CV scores among 
the 19 methods. It is worth noting that 

the ANOVA does not take into consideration the 
consistency of the ranking of methods’ CV scores 
across variables.

Discussion
Our analysis indicates that a little domain knowl-
edge in the form of preset data density estimates 
goes a long way towards improving the accuracy 
of areal interpolation beyond that provided by 
simple areal weighting. Those methods using 
preset density estimates generally performed 
better than conventional and IDM methods that 
did not use presets, particularly for the total 
population variable. Perhaps more importantly, 
however, our results also suggest that if an analyst 
does not have domain knowledge enough to dis-

Figure 6. A map of the count error by block for the dasymetric map 
presented in Figure 3.  Class intervals are by standard deviation from 
the mean error, which is zero.  Red areas indicate underestimation of 
population while blue areas indicate overestimation.  Inset box indicates 
the area of detail shown in Figure 7.

Mean Square F Significance
Total Population Between Groups 0.002857 5.985452 1.11368E-14

Within Groups 0.000477
Hispanic Pop. Between Groups 0.002089 2.825390 5.85E-05

Within Groups 0.000739
Children Between Groups 0.004083 5.939901 1.57E-14

Within Groups 0.000687
Households Between Groups 0.003097 6.431697 3.72E-16

Within Groups 0.000482
Table 3. Results of the ANOVA of the CV scores of the 19 areal interpolation maps, for each of the four variables.
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tinguish populated ancillary classes from unpop-
ulated ones, the empirical sampling approach of 
IDM can recover that information and produce 
an areal interpolation map equal in quality to, or 
better than, that using the binary method.  

This study also indicates that the binary method 
can be improved by combining an analyst’s domain 
knowledge of populated/unpopulated areas with a 
sampling approach for specifying the other ancil-
lary class-statistical surface relationships. Those 
methods that consistently scored among the lowest 
in mean CV were those that combined presets with 
sampling. Our results suggest that improvements 
to the binary method can be obtained with even 
moderate sampling quality, when combined with 
appropriate preset values. The use of refined areal 
weighting also appears to contribute to improved 
estimates in the face of poor sampling.  

Although IDM shows a clear improvement over 
areal weighting, caution is advised in interpreting 
the superiority of one IDM sampling method over 

the others, given the variability in the results. This 
variability in accuracy stems in large measure from 
the advantages and disadvantages of each of the 
IDM sampling methods. The centroid method 
guarantees a high sample rate, as each source zone 
centroid falls within an ancillary class zone. The 
potential problem with centroid sampling is that it 
is vulnerable to outliers in the form of, essentially, 
incorrect samples. For instance, consider the case 
where a source zone with a high density is covered 
primarily by ancillary class A, but its centroid lies 
in ancillary class B. Thus, the high density value 
will be associated with class B, whereas, in reality, 
the ancillary class A has the high density.  

This shortcoming is corrected by the contained 
sampling method. However, the requirement for 
complete containment of the source zone within 
a target zone is rarely met in situations where the 
ancillary data are encoded at a finer resolution than 
the source zone data, as in the present study. A low 
number of samples is thus obtained, leading to a 

Figure 7. Maps of the inset box area shown in Figure 6: Total population density by tract (A), land cover (B), total 
population density by dasymetric target zone (C), and count error by block (D). Class interval boundaries and color 
schemes are as shown in previous figures.
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reliance on other density estimation methods. The 
percent cover method offers a compromise between 
the sampling rate/vulnerability to outliers trade-
off by allowing the user to increase the sampling 
rate by lowering the percent cover threshold. But 
as the threshold is lowered, the method becomes 
increasingly vulnerable to the problems associated 
with the centroid method.  

We emphasize, however, that our purpose here is 
not to identify the best specific IDM parameteriza-
tion for all applications. In fact, our results suggest 
that there is not one most accurate parameteriza-
tion, but rather the accuracy of each varies accord-
ing to the nature of the statistical surface under 
analysis and its relation to the geometry of the 
source zones, ancillary class zones, and regions. For 
instance, although IDM runs utilizing regions did 
not provide any more accurate areal interpolations 
than those that did not use regions, we speculate 
that the use of regions may provide a significant 
improvement in accuracy in other areal interpola-
tion contexts where the regions data better capture 
spatial variation in the functional relationships 
between the statistical surface and the individual 
ancillary classes. In the present study, for example, 
perhaps an ancillary layer distinguishing urban and 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1                                    
2                                    
3 abcd ad                                
4 abcd d                                
5 abcd ac                                
6 abc c   d                            
7 ac a d d                            
8 abcd d                                
9 acd a                                

10 ac   d d       d                    
11 acd ad               d                
12       d ac c a   ac c a              
13 bd   c c ac c a c ac c ac              
14 c   d d                 c          
15 cd                       c          
16     ad d ac c a   ac c a              
17       d                            
18 c   d d     a d a   d              
19 acd                                  

Note: Interpolation methods are listed 1-19 on the X and Y axes (see text for the method associated with each number).  A significant difference 
between methods at the 0.10 level is indicated by a letter at the intersection of two methods.  An ‘a’ indicates significant difference in total 
population, a ‘b’ in Hispanic population, a ‘c’ in children, and a ‘d’ in households.

rural areas would capture such spatial variation—if, 
indeed, it exists—better than counties, which can 
contain both urban and rural areas.

We also argue that through the evaluation pro-
vided by the summary file that accompanies the 
dasymetric map output, an analyst is able to identify 
the parameterization(s) that are best suited for 
that particular application. While a comparison 
of the summary files from multiple IDM runs will 
not provide a comprehensive accuracy assessment 
(which is only possible if one has validation data 
already in hand), it allows the analyst to make an 
informed decision as to the relative accuracies 
of multiple IDM parameterizations based on a 
number of factors:
•	 The logical rankings of the mean estimated 

data densities among classes;
•	 The sampling rate and how the samples were 

acquired for each class;
•	 The variability in the sampled source zone 

data densities for each class;
•	 The variability in the estimated target zone 

data densities for each class; and
•	 The similarity between the sampled data den-

sity mean and standard deviation and the 

Table 4. Results of ANOVA Tamhanes T2 posthoc test of significant difference in mean CV score between each pair-wise 
combination of areal interpolation maps, for fach variable.
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estimated data density mean and standard 
deviation, respectively.

Conclusion
The primary contribution of this research is the 
presentation of a new dasymetric mapping tech-
nique, IDM, which combines an analyst’s domain 
knowledge with a data-driven methodology to 
specify the functional relationship of the ancil-
lary data classes with the underlying statistical 
surface being mapped. The data-driven compo-
nent of IDM employs a flexible empirical sam-
pling approach to acquire information on the 
data densities of individual ancillary classes, and 
it uses the ratio of class densities to redistribute 
population to sub-source zone areas. We have 
also shown how summary statistics of the result-
ing dasymetric map can be used to compare the 
quality of the output of different IDM param-
eterizations. Finally, we have demonstrated IDM 
using a case study of four population variables 
and presented a visual and quantitative error 
assessment comparing various IDM parameter-
izations with conventional areal weighting and 
binary dasymetric mapping methods. Intelligent 

dasymetric mapping outperforms areal weight-
ing, and certain IDM parameterizations outper-
form the binary method.  

This research advances previous approaches in 
areal interpolation and dasymetric mapping in a 
number of ways. First, unlike previous approaches 
that quantify the functional relationship between 
the statistical surface and the ancillary data through 
strictly subjective or statistical means, IDM sup-
ports the ability to combine domain knowledge 
(using preset density values) with statistical estima-
tion (using empirical sampling) to quantify this 
relationship. The information provided by the 
use of presets and sampling is, in a sense, re-used 
to makes density estimates for ancillary classes 
for which no other density information is avail-
able (using refined areal weighting). Intelligent 
dasymetric mapping also differs from previous 
approaches in that it offers a variety of parameter-
ization options regarding the sampling technique 
employed, as well as the use of regions. Thus, 
instead of a single areal interpolation product, 
IDM can return multiple products whose relative 
performance may be compared using the auto-
matically generated summary statistics that IDM 
provides. Since areal interpolation is, by defini-

Figure 8. Mean CV score of each areal interpolation method for total population (A), Hispanic population (B), children (C), 
and households (D).  Note that the scale of the Y axis varies from graph to graph.
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tion, an estimation procedure, information on the 
reliability of the estimation is key to developing 
useful areal interpolation products.

In future research we intend to compare IDM with 
other areal interpolation methods while also using 
different data sets. In addition to areal weighting 
and the binary dasymetric technique, compari-
sons to the limiting variable method, expectation 
maximization, and other approaches would serve 
to further evaluate the relative performance of 
IDM. And although the present research used four 
different variables for accuracy assessment, the 
incorporation of other data sets for regions other 
than the Front Range of Colorado would be useful 
for evaluating the sensitivity of the accuracy assess-
ment to the geometric configuration and spatial 
distribution of the variable being mapped.

We also intend to continue to improve the IDM 
methodology. First, we believe a key strength of 
IDM is the ability to integrate the analyst’s domain 
knowledge with information derived from data 
analysis. This integration may be enhanced by 
providing more sophisticated modes of user interac-
tion, for instance by allowing the analyst to manu-
ally select samples for certain classes through a 
graphical user interface (GUI), as in a supervised 
classification of remotely sensed imagery (Lillesand 
and Kiefer 2004). In addition, though the current 
implementation uses the ratio of data densities 
to specify the functional relationship between the 
ancillary classes and the statistical surface there is 
no reason that other statistical methods, such as 
regression, cannot be utilized in the same manner. 
A promising advance in this regard is reported by 
Harvey (2002b), who describes a two-stage approach 
where the binary method is initially applied, then 
followed by a regression-based iterative refinement 
to redistribute population within the populated 
areas.  Finally, we plan to explore the possibility of 
using the information contained in the summary 
table to optimize the IDM parameterization. For 
this purpose, an overall index of quality incorpo-
rating various components of the summary table 
may be generated and an optimization algorithm 
applied to iteratively refine the parameter settings 
to maximize the index value.  
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